
Notation

x represents the data.

With discrete-state discrete-time Markov chains, the data are typi-
cally the state of the system at times 1, 2, . . . , N .

With DNA and protein sequence analysis, the data are often the
amino acid or nucleotide residues that occupy positions 1, 2, . . . , N
of a sequence of length N .

Position i of the sequence will be denoted xi.

For example, if

x = AGTCT,

then N=5. Also, x1 = A, x2 = G, x3 = T , x4 = C, and x5 = T .
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To represent subsequences, I will use xi to indicate positions 1, 2, . . . , i
in the sequence.

In the example above,

x1 = x1 = A

x2 = x1x2 = AG

x3 = x1x2x3 = AGT

x4 = x1x2x3x4 = AGTC

x5 = x1x2x3x4x5 = AGTCT

Notice that x = x5 in this example.
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Conditional Probability

For events y and z,

Pr (y, z) = Pr (y | z)Pr (z)

= Pr (z | y)Pr (y)

Events y and z are independent if and only if

Pr (y | z) = Pr (y).

Equivalently, events y and z are independent if and only if

Pr (z | y) = Pr (z).

Equivalently (again), events y and z are independent if and only if

Pr (y, z) = Pr (y)Pr (z).

Of course, Pr (y, z) = Pr (z, y)
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Getting back to sequences . . .

If x1 and x2 are independent of each other, then

Pr (x1, x2) = Pr (x1)Pr (x2).

If x1, x2, and x3 are all independent of one another, then

Pr (x1, x2, x3) = Pr (x1)Pr (x2)Pr (x3).

If xi and xj are independent of one another for all i and all j, then

Pr (x) = Pr
(
xN

)
= Pr (x1, x2, . . . , xN) =

N∏
i=1

Pr (xi)

and

Pr (xi+1 | x1, x2, . . . , xi) = Pr (xi+1).
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Markov chains

When Pr (xi | x1, x2, . . . , xi−1) = Pr (xi) for all i > 1, we have a
Markov chain of order 0.

When Pr (xi | x1, x2, . . . , xi−1) = Pr (xi | xi−1) for all i > 1, we
have a Markov chain of order 1.

Note: When people refer to Markov chains but do not refer to
the order of the Markov chain, they are usually thinking about
Markov chains of order 1

When Pr (xi | x1, x2, . . . , xi−1) = Pr (xi | xi−2, xi−1) for all i > 2,
we have a Markov chain of order 2.

When Pr (xi | x1, x2, . . . , xi−1) = Pr (xi | xi−k, xi−k+1, . . . , xi−1)
for all i > k, we have a Markov chain of order k.
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Assume that sequence x has length N and that it can be described
by a Markov chain of order 1. This means that

Pr (x) = Pr (x1, x2, . . . , xN)

= Pr (x1)Pr (x2 | x1)Pr (x3 | x1, x2)

×Pr (x4 | x1, x2, x3) . . .

×Pr (xN | x1, x2, . . . , xN−1)

= Pr (x1)Pr (x2 | x1)Pr (x3 | x2)

×Pr (x4 | x3) . . . Pr (xN | xN−1)
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The same point in different notation . . .

Pr (x) = Pr
(
xN

)

= Pr
(
x1

)
Pr

(
x2 | x1

)
Pr

(
x3 | x2

)
×Pr

(
x4 | x3

)
. . . Pr

(
xN | xN−1

)

= Pr (x1)Pr
(
x2 | x1

)
Pr

(
x3 | x2

)
×Pr

(
x4 | x3

)
. . . Pr

(
xN | xN−1

)

= Pr (x1)Pr (x2 | x1)Pr (x3 | x2)

×Pr (x4 | x3) . . . Pr (xN | xN−1)
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Parameter Estimation

Assume that we have a DNA sequence x but we only pay attention
to whether each position xi is a purine or a pyrimidine.

A and G are purines. A generic purine will be denoted by R.

C and T are pyrimidines. A generic pyrimidine will be denoted by
Y.

For example, this means that the sequence x = ACGTC would
effectively be x = RY RY Y .

We also assume that we have a first order Markov chain.

In this case,

Pr (x) = Pr (x1 = R)Pr (x2 = Y | x1 = R)

×Pr (x3 = R | x2 = Y )Pr (x4 = Y | x3 = R)

×Pr (x5 = Y | x4 = Y )
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We assume E and F denote any two particular states of the Markov
chain.

A time-homogeneous Markov chain is one in which Pr (xi = E | xi−1 = F )
is identical for all possible values of i.

In the purine/pyrimidine case, we assume that for all possible values
of i

Pr (xi = R | xi−1 = R) = pRR

Pr (xi = R | xi−1 = Y ) = pY R

Pr (xi = Y | xi−1 = R) = pRY

Pr (xi = Y | xi−1 = Y ) = pY Y

pRR, pRY , pY R, and pY Y are known as the transition probabilities
of the Markov chain.
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Notice also that

pRR + pRY = 1

pY R + pY Y = 1

The above two constraints mean that we have two degrees of freedom
when specifying the values of the 4 parameters pRR, pRY , pY R, and
pY Y . If we know the values of pRR and pY R then we know the values
of pRY and pY Y .

Assume that we do know the values of pRR and pY R.

For given values of pRR and pY R, we can write the probability of
observing the data x = RY RY Y as

Pr (x | pRR, pY R) = Pr (x1 = R)pRY pY RpRY pY Y .
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If we are interested in estimating pRR, pRY , pY R, and pY Y then we
will have to decide how to treat Pr (x1 = R).

One possibility is that Pr (x1 = R) is known a priori. For example,
maybe Pr (x1 = R) = 1 because we know the first position of the
sequence will be a purine.
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Another possibility is that Pr (x1 = R) contains information that
will help us estimate pRR, pRY , pY R, and pY Y .

For example, maybe we are willing to assume that the Markov chain
defined by pRR, pRY , pY R, and pY Y has achieved stationarity prior
to x1.

Intuitively, the probability that a Markov chain occupies a particular
state depends on the initial condition of the Markov chain and on
the transition probabilities of the Markov chain.

If the Markov chain is sampled long after its beginning, then the
state of the chain when it is sampled is almost independent of the
initial state of the chain.

At the extreme when the Markov chain is sampled an infinite amount
of time after its beginning, the state of the chain will be independent
of the initial condition/state. This is stationarity.
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Instead, the state of the chain will depend only on the transition
probabilities pij and the probability that the Markov chain has state
i when it has achieved stationarity will be denoted πi.

For a stationary Markov chain,

πj =
∑
i
πipij

where i and j ∈ {R, Y }.

Back to sequence data . . .

For simplicity, assume that Pr (x1 = R) = 1.

Then, we have in the above example . . .

Pr (x | pRR, pY R) = 1 × pRY pY RpRY pY Y .

In words, the above equation is the probability of the data given the
values of the model parameters.
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For discrete data, the probability of the data given the values of the
model parameters is the likelihood.

Maximum likelihood estimation of parameters is done by finding
the parameter values that maximize the likelihood.

In Bayesian analyses, it is the probability density of the parameter
values given the data that guides our inference. Such a probability
density is termed a posterior distribution.

To perform a Bayesian analysis, we must specify the prior distribu-
tion of our parameters.

A simple example would have the prior distributions Pr (pRR) and
Pr (pY R) be independent of one another. Let’s assume

Pr (pRR) = 12pRR
2(1 − pRR) 0 ≤ pRR ≤ 1

Pr (pY R) = 4(1 − pY R)3 0 ≤ pY R ≤ 1
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For a Bayesian analysis, we want to determine Pr (pRR, pY R | x)

Pr (pRR, pY R | x) =
Pr (x | pRR, pY R)Pr (pRR, pY R)

Pr (x)

=
Pr (x | pRR, pY R)Pr (pRR, pY R)∫1

pRR=0
∫1
pY R=0 Pr (x | pRR, pY R)Pr (pRR, pY R)dpRRdpY R

In our case, the posterior distribution is

Pr (pRR, pY R | x) = 1800pRR
2(1 − pRR)3p1

Y R(1 − pY R)4

The mean of the posterior distributions (E (pRR | x) and E (pY R | x))
would be conventional Bayesian estimates of pRR and pY R.

E (pRR | x) =
∫ 1
pRR=0 pRRPr (pRR | x)dpRR

E (pY R | x) =
∫ 1
pY R=0 pY RPr (pY R | x)dpY R
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The MAP (maximum a posteriori) estimates are the values of the
parameters that maximize the posterior density.

MAP estimates are used rather in cases where it is not computa-
tionally tractable to compute the posterior means.

(Note that we have been using Pr (·) for both discrete and continuous
probability densities)
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Hidden Markov Models (HMMs)

A hidden Markov model is a case where data depend on “hidden”
states and these hidden states are organized according to a Markov
chain.

We cannot directly observe the hidden states but we can make in-
ferences about the hidden states based on the data.

For example, some genome regions are GC-rich and some genome
regions are AT-rich.

In a long DNA sequence, we may be interested in defining which are
the GC-rich regions and which are the AT-rich regions.

The tricky part is the A and T can be found in GC-rich regions and
G and C can be found in AT-rich regions.
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For a sequence x = x1x2 . . . xN , we will define a corresponding set
of states y = y1y2 . . . yN .

Let yi be 1 if position xi is in a GC-rich region and yi be 0 if position
xi is in an AT-rich region.

Assume that xi depends directly on yi. Let,

Pr (xi = A | yi = 0) = pA0

Pr (xi = A | yi = 1) = pA1

Pr (xi = G | yi = 0) = pG0

etc. . . .
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Also, assume that the states yi follow a Markov chain where

Pr (yi+1 = 0 | yi = 0) = ρ00

Pr (yi+1 = 0 | yi = 1) = ρ10

Pr (yi+1 = 1 | yi = 0) = ρ01

Pr (yi+1 = 1 | yi = 1) = ρ11

To make things simple, assume that Pr (y1 = 1) = 1 and therefore
Pr (y1 = 0) = 0.
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Pretend that we observe a sequence x and the hidden states y.

x = G C A G C T C A A T G
y = 1 1 1 1 1 1 1 0 0 0 0

We can calculate
Pr (x, y | pA0, pA1, . . . , pT1, ρ00, ρ01, ρ10, ρ11).

To shorten notation, we’ll just write Pr (x, y) to represent this prob-
ability.

Pr (x, y) = Pr (y)Pr (x | y)

= Pr (y1 = 1)ρ6
11ρ10ρ

3
00Pr (x | y)

= ρ6
11ρ10ρ

3
00Pr (x | y)

Pr (x | y) = pG1pC1pA1 . . . pG0
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If we assume that we observe x but not y,

Pr (x) =
∑
y

Pr (x | y)Pr (y)

In our example, N = 11 and so there are 2N = 211 = 2048 possible
y sequences.

When N is not so small, it is difficult to calculate the above sum
without a clever algorithm.

to be continued ...
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