Hidden Markov models (continued)

$$
\begin{aligned}
& \operatorname{Pr}\left(x^{i+1}, y_{i+1}\right) \\
& =\operatorname{Pr}\left(x_{i+1}, x^{i}, y_{i+1}\right) \\
& =\sum_{y_{i}} \operatorname{Pr}\left(x_{i+1}, x^{i}, y_{i+1}, y_{i}\right) \\
& =\sum_{y_{i}} \operatorname{Pr}\left(x_{i+1}, y_{i+1} \mid x^{i}, y_{i}\right) \operatorname{Pr}\left(x^{i}, y_{i}\right) \\
& =\sum_{y_{i}} \operatorname{Pr}\left(x_{i+1} \mid y_{i+1}, x^{i}, y_{i}\right) \operatorname{Pr}\left(y_{i+1} \mid x^{i}, y_{i}\right) \operatorname{Pr}\left(x^{i}, y_{i}\right) \\
& =\sum_{y_{i}} \operatorname{Pr}\left(x_{i+1} \mid y_{i+1}\right) \operatorname{Pr}\left(y_{i+1} \mid y_{i}\right) \operatorname{Pr}\left(x^{i}, y_{i}\right) \\
& =\sum_{y_{i}} \operatorname{Pr}\left(x^{i}, y_{i}\right) p_{x_{i+1} y_{i+1}} \rho_{y_{i} y_{i+1}}
\end{aligned}
$$

We initialize the algorithm by setting

$$
\operatorname{Pr}\left(x_{1}, y_{1}\right)=\operatorname{Pr}\left(x_{1} \mid y_{1}\right) \operatorname{Pr}\left(y_{1}\right)=p_{x_{1} y_{1}} \operatorname{Pr}\left(y_{1}\right)
$$

where $\operatorname{Pr}\left(y_{1}\right)$ has to be set by the user.
At the end of the sequence of length N,

$$
\operatorname{Pr}\left(x^{N}\right)=\sum_{y_{N}} \operatorname{Pr}\left(x^{N}, y_{N}\right) .
$$

This strategy for calculating $\operatorname{Pr}\left(x^{N}\right)$ is known as the Forward algorithm.

Viterbi algorithm

The Viterbi algorithm finds the most probable "path" of states though the hidden Markov model (HMM).

In our notation, the Viterbi algorithm finds the path $y=y_{1} y_{2} \ldots y_{N}$ that maximizes $\operatorname{Pr}(x, y)$.

The Viterbi algorithm returns the probability $\operatorname{Pr}(x, y)$ associated with the path.

Notice that the path that maximizes $\operatorname{Pr}(x, y)$ must be identical to the path that maximizes

$$
\operatorname{Pr}(y \mid x)=\frac{\operatorname{Pr}(x, y)}{\operatorname{Pr}(x)}
$$

The path through the hidden Markov model that maximizes $\operatorname{Pr}(x, y)$ will be denoted by ν.

Consider all paths that travel through hidden states $1,2, \ldots, i$ and that end with $y_{i}=j$. Among these paths, let $\nu^{i}(j)$ be the path that maximizes $\operatorname{Pr}\left(x^{i}, y^{i-1}, y_{i}=j\right)$.

$$
\begin{aligned}
& \operatorname{Pr}\left(x^{i+1}, \nu^{i+1}(j)\right) \\
& =\max _{k} \operatorname{Pr}\left(x_{i+1}, x^{i}, y_{i+1}=j, \nu^{i}(k)\right) \\
& =\max _{k} \operatorname{Pr}\left(x_{i+1}, y_{i+1}=j \mid x^{i}, \nu^{i}(k)\right) \operatorname{Pr}\left(x^{i}, \nu^{i}(k)\right) \\
& =\max _{k} \operatorname{Pr}\left(x_{i+1} \mid y_{i+1}=j, x^{i}, \nu^{i}(k)\right) \operatorname{Pr}\left(y_{i+1}=j \mid x^{i}, \nu^{i}(k)\right) \operatorname{Pr}\left(x^{i}, \nu^{i}(k)\right) \\
& =\max _{k} \operatorname{Pr}\left(x_{i+1} \mid y_{i+1}=j\right) \operatorname{Pr}\left(y_{i+1}=j \mid \nu^{i}(k)\right) \operatorname{Pr}\left(x^{i}, \nu^{i}(k)\right) \\
& =\max _{k} \operatorname{Pr}\left(x_{i+1} \mid y_{i+1}=j\right) \operatorname{Pr}\left(y_{i+1}=j \mid y_{i}=k\right) \operatorname{Pr}\left(x^{i}, \nu^{i}(k)\right) \\
& \qquad \operatorname{Pr}\left(x^{N}, \nu\right)=\max _{j} \operatorname{Pr}\left(x^{N}, \nu^{N}(j)\right)
\end{aligned}
$$

(path ν can be recovered by keeping track of which choice achieved the maximum at every step)

Backward Algorithm

Sometimes we want to infer a specific hidden Markov model state rather than to jointly infer all states in the hidden Markov model.

In this case, we care about

$$
\operatorname{Pr}\left(y_{i} \mid x\right)=\frac{\operatorname{Pr}\left(x, y_{i}\right)}{\operatorname{Pr}(x)}
$$

Let χ^{i} represent the subsequence $x_{i}, x_{i+1}, x_{i+2}, \ldots, x_{N}$.

With this notation, x has the same meaning as x^{i} together with χ^{i+1}.

So,

$$
\begin{aligned}
\operatorname{Pr}\left(y_{i} \mid x\right) & =\frac{\operatorname{Pr}\left(x^{i}, \chi^{i+1}, y_{i}\right)}{\operatorname{Pr}(x)} \\
\operatorname{Pr}\left(x^{i}, \chi^{i+1}, y_{i}\right) & =\operatorname{Pr}\left(\chi^{i+1} \mid x^{i}, y_{i}\right) \operatorname{Pr}\left(x^{i}, y_{i}\right) \\
& =\operatorname{Pr}\left(\chi^{i+1} \mid y_{i}\right) \operatorname{Pr}\left(x^{i}, y_{i}\right)
\end{aligned}
$$

$\operatorname{Pr}\left(x^{i}, y_{i}\right)$ is determined by the forward algorithm.
The backward algorithm starts with

$$
\begin{aligned}
& \operatorname{Pr}\left(\chi^{N} \mid y_{N-1}\right)=\operatorname{Pr}\left(x_{N} \mid y_{N-1}\right)=\sum_{y_{N}} \operatorname{Pr}\left(x_{N}, y_{N} \mid y_{N-1}\right) \\
& =\sum_{y_{N}} \operatorname{Pr}\left(x_{N} \mid y_{N}, y_{N-1}\right) \operatorname{Pr}\left(y_{N} \mid y_{N-1}\right) \\
& =\sum_{y_{N}} \operatorname{Pr}\left(x_{N} \mid y_{N}\right) \operatorname{Pr}\left(y_{N} \mid y_{N-1}\right) \\
& =\sum_{y_{N}} p_{x_{N} y_{N}} \rho_{y_{N-1} y_{N}}
\end{aligned}
$$

The backward algorithm continues with

$$
\begin{aligned}
& \operatorname{Pr}\left(\chi^{i+1} \mid y_{i}\right) \\
& =\operatorname{Pr}\left(x_{i+1}, \chi^{i+2} \mid y_{i}\right) \\
& =\sum_{y_{i+1}} \operatorname{Pr}\left(x_{i+1}, \chi^{i+2}, y_{i+1} \mid y_{i}\right) \\
& =\sum_{y_{i+1}} \operatorname{Pr}\left(x_{i+1}, \chi^{i+2} \mid y_{i}, y_{i+1}\right) \operatorname{Pr}\left(y_{i+1} \mid y_{i}\right) \\
& =\sum_{y_{i+1}} \operatorname{Pr}\left(x_{i+1} \mid y_{i}, y_{i+1}, \chi^{i+2}\right) \operatorname{Pr}\left(\chi^{i+2} \mid y_{i}, y_{i+1}\right) \operatorname{Pr}\left(y_{i+1} \mid y_{i}\right) \\
& =\sum_{y_{i+1}} \operatorname{Pr}\left(x_{i+1} \mid y_{i+1}\right) \operatorname{Pr}\left(\chi^{i+2} \mid y_{i+1}\right) \operatorname{Pr}\left(y_{i+1} \mid y_{i}\right) \\
& =\sum_{y_{i+1}} p_{x_{i+1} y_{i+1}} \operatorname{Pr}\left(\chi^{i+2} \mid y_{i+1}\right) \rho_{y_{i} y_{i+1}}
\end{aligned}
$$

