1. $a>b>0$, both a and b are barely above 0 .
2. Underflow would cause both to be rounded to 0 .
3. Want to calculate $\log (a+b)$ from $\log (a)$ and $\log (b)$.

$$
\begin{aligned}
a+b & =e^{\log (a)}+e^{\log (b)}=1 \times\left(e^{\log (a)}+e^{\log (b)}\right) \\
& =e^{\log (a)-\log (a)}\left(e^{\log (a)}+e^{\log (b)}\right)=e^{\log (a)} e^{-\log (a)}\left(e^{\log (a)}+e^{\log (b)}\right) \\
& =e^{\log (a)}\left(e^{\log (a)-\log (a)}+e^{\log (b)-\log (a)}\right)
\end{aligned}
$$

Because of above and because log of product is sum of logs,

$$
\begin{aligned}
& \log (a+b)=\log \left(e^{\log (a)}\right)+\log \left(e^{\log (a)-\log (a)}+e^{\log (b)-\log (a)}\right) \\
& \log (a+b)=\log (a)+\log \left(e^{\log (a)-\log (a)}+e^{\log (b)-\log (a)}\right)
\end{aligned}
$$

Assume $\operatorname{Pr}\left(x^{i}, y_{i}=0\right)=e^{-1000}$ and $\operatorname{Pr}\left(x^{i}, y_{i}=1\right)=e^{-11000}$.
$m_{i}=$ maximum of e^{-1000} and $e^{-11000}=e^{-1000}$
$\log \left(m_{i}\right)=-1000$
Assume $x_{i+1}=G, p_{G 0}=0.4$, and $p_{G 1}=0.7$.
Assume $\rho_{00}=0.8\left(\rho_{01}=\right.$?).
Assume $\rho_{10}=0.1\left(\rho_{11}=\right.$?).

$$
\begin{aligned}
\log \left(\operatorname{Pr}\left(x^{i+1}, y_{i+1}\right)\right)= & \log \left(m_{i}\right)+\log \left(\sum _ { y _ { i } } \operatorname { e x p } \left(-\log \left(m_{i}\right)+\right.\right. \\
& \left.\left.\log \left(\operatorname{Pr}\left(x^{i}, y_{i}\right)\right)+\log \left(p_{x_{i+1} y_{i+1}} \rho_{y_{i} y_{i+1}}\right)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \log \left(\operatorname{Pr}\left(x^{i+1}, y_{i+1}=0\right)\right)=\log \left(m_{i}\right)+ \\
& \log \left(\exp \left(-\log \left(m_{i}\right)+\log \left(\operatorname{Pr}\left(x^{i}, y_{i}=0\right)\right)+\log \left(p_{G 0} \rho_{00}\right)\right)+\exp \left(-\log \left(m_{i}\right)+\log \left(\operatorname{Pr}\left(x^{i}, y_{i}=1\right)\right)+\log \left(p_{G 0} \rho_{10}\right)\right)\right) \\
& =-1000+\log (\exp (1000-1000+\log (0.4 \times 0.8))+\exp (1000-11000+\log (0.4 \times 0.1))) \\
& =-1000+\log \left((0.4 \times 0.8)+\left(e^{-10000} \times 0.4 \times 0.1\right)\right)
\end{aligned}
$$

