
ABSTRACT

ZAYKIN, DMITRI V. Statistical Analysis of Genetic Associations (Advisor:

Bruce S. Weir)

There is an increasing need for a statistical treatment of genetic data prompted

by recent advances in molecular genetics and molecular technology. Study of as-

sociations between genes is one of the most important aspects in applications of

population genetics theory and statistical methodology to genetic data. Develop-

ments of these methods are important for conservation biology, experimental pop-

ulation genetics, forensic science, and for mapping human disease genes. Over the

next several years, genotypic data will be collected to attempt locating positions

of multiple genes affecting disease phenotype. Adequate statistical methodology is

required to analyze these data. Special attention should be paid to multiple test-

ing issues resulting from searching through many genetic markers and high risk

of false associations. In this research we develop theory and methods needed to

treat some of these problems. We introduce exact conditional tests for analyzing

associations within and between genes in samples of multilocus genotypes and effi-

cient algorithms to perform them. These tests are formulated for the general case

of multiple alleles at arbitrary numbers of loci and lead to multiple testing ad-

justments based on the closing testing principle, thus providing strong protection

of the family-wise error rate. We discuss an application of the closing method to

the testing for Hardy-Weinberg equilibrium and computationally efficient short-

cuts arising from methods for combining p-values that allow to deal with large

numbers of loci. We also discuss efficient Bayesian tests for heterozygote excess

and deficiency, as a special case of testing for Hardy-Weinberg equilibrium, and the



frequentist properties of a p-value type of quantity resulting from them. We further

develop new methods for validation of experiments and for combining and adjust-

ing independent and correlated p-values and apply them to simulated as well as to

actual gene expression data sets. These methods prove to be especially useful in

situations with large numbers of statistical tests, such as in whole-genome screens

for associations of genetic markers with disease phenotypes and in analyzing gene

expression data obtained from DNA microarrays.
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Chapter 1

INTRODUCTION
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The purpose of this research is to develop and study statistical methods for

analysis of genetic associations. Most of the motivation arises from the genetics

context, however the applicability of approaches described here is broader.

In chapter 2 we developed exact tests for association between alleles at genetic

loci and studied their properties. Exact tests are based on Fisher’s (1932) idea

that, under the multinomial sampling model, the unknown population frequencies

of marginal categories (nuisance parameters) can be eliminated by conditioning on

their observed counts. This leads to a way of calculating cumulative probabilities

of joint multinomial counts under the null hypothesis of independence. Fisher

developed his test for 2×2 contingency tables, but it is likely that only the lack

of computing power prevented him from extending the test to the general R × C

case.

If observed counts nij and nji cannot be distinguished, as is the case with diploid

genotypic classification, a “folded contingency table”, in I.J. Good’s (1965) termi-

nology, could be formed. When there are two alleles at a genetic locus, Haldane’s

(1954) exact test results. G. Ishi (1962) derived exact conditional probabilities for

the general case with many categories and called such tables “intraclass contin-

gency tables”. Maiste (1993) studied multiallelic versions of such exact tests for

one and two loci. We extended this approach to many loci and suggested an effi-

cient algorithm for calculating exact conditional probabilities of observing counts

of multilocus genotypes. These probabilities are calculated under different hy-

potheses of independence of alleles within and between loci and genotypes across

loci. The resulting test addresses an assumption used in forensic identification

cases, called “the product rule”. The product rule is the procedure of multiplying
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frequencies of matching alleles across loci. This procedure forms a combined es-

timated proportion of multilocus profile and relies on the absence of pronounced

population structure. We showed that suggested exact tests perform satisfactorily

for testing a hypothesis that this assumption of population homogeneity holds.

In chapter 3 we extended this research and developed multiple testing adjust-

ments for tests for Hardy-Weinberg equilibrium. We proposed a powerful global

exact test for Hardy-Weinberg equilibrium. The null hypothesis of this global test

is that there is no deviation from equilibrium at any of the genetic loci. The alter-

native hypothesis is that there are one or more loci in disequilibrium. If the null

hypothesis involving all k loci is rejected, it is then possible to proceed to smaller

subsets of loci and localize minimal subsets containing one or more loci that re-

tain the evidence of association. The procedure of starting with a global test and

continuing with subsets of hypotheses has been termed the “closure” method by

Marcus et al. (1976) and has been applied by them in the analysis of variance

framework. If a valid α-level test is available for each subset of hypotheses, then

the individual significance level for a hypothesis Hi is given by the least significant

test of all subsets that involve Hi. Such a procedure protects the family-wise error

rate (FWER) in the strong sense, that is, the probability of falsely rejecting one or

more true null hypotheses is ≤ α for all subsets of k, even in the case when there

are some non-true null hypotheses in the set of k.

The disadvantage of the closure method is that there are
∑k

i=1

(
k
i

)
= 2k − 1

subsets to consider, a number that rapidly grows with k. This limits the applicabil-

ity of the method in general, but sometimes shortcuts are available. For example,

Holm’s (1979) method of adjusting p-values for multiple testing is to start with the

3



smallest p in the set of k ordered p-values and proceed up as long as pi(k−i+1) ≤ α.

Then all null hypotheses are rejected for which this inequality holds. Holm’s pro-

cedure immediately follows from the closure principle if the test statistic at each

subset is the smallest p among p-values that correspond to individual hypotheses

composing this subset, multiplied by the length of the subset. In other words, the

test statistic is min-p, Bonferroni-adjusted by the number of individual hypotheses

in the subset. If a subset of length j is declared significant, all shorter subsets with

that min-p are automatically declared significant and this results in Holm’s pro-

cedure, although Holm’s proof that the method strongly protects FWER is based

on different considerations.

Another example where the closure principle results in a simple way of local-

izing significant subsets of hypotheses is when the test statistic is based on the

“truncated product” method of combining probabilities by Zaykin et al. (1999).

The method and the closing procedure were described in chapter 4. The test statis-

tic of the method is the distribution function of the product of p-values that are

smaller than some cut-off point, τ , derived under the condition that all null hy-

potheses are true. Because of the algebraic properties of this test statistic, setting

τ ≤ α results in a simple closing procedure where it is not necessary to test all

2k − 1 subsets of hypotheses. If the global hypothesis is rejected, the individual

adjustments for any pi ≤ τ are approximately given by 1 − (1 − pi)
k+j−1, where

j is the number of p-values that are ≤ τ . The method is found to work well

when only some of the null hypotheses are false, and generally compares well with

other methods for combining p-values. It is especially useful in situations when the

number of tests is very large and a follow-up study is possible for the validation

4



of some of the tests. The truncated product method also has potential outside of

the genetic context. For example, in meta-analysis of published data there is a

well known problem of the “publication bias”, when only successful findings are

reported. Models have been developed for estimating the total number of studies

(e.g. Gleser and Olkin, 1996), and therefore an adequate inference can be made

using the truncated product method.

In chapter 5 we further developed and studied properties of the combination

tests with a special attention to the cases of large k. A new method based on

the distribution of first order statistics was suggested. The method also provides

individual adjustments that are smaller than ones based on step-wise procedures

of Hochberg or Holm. This improvement is obtained at the cost that k must be

specified in advance. We described how combination tests are extended to handle

correlated data. A series of simulations was conducted to study performance of

the combination tests and compare them with step-wise methods of Hochberg

(1988) and Benjamini and Hochberg (1995). Finally, the tests were applied to the

microarray data and the conclusion has been made that among 3567 genes studied,

it is likely that there are 50 to 75 genes that respond to the treatment, and that the

individual statistical power of tests for comparisons of levels of DNA expression is

40 to 50%.

A replication experiment of a smaller size was available that confirmed some

of the effects that were declared significant in the first experiment. To obtain

the overall significance, properly adjusted by the number of tests in both studies,

a method of Zaykin and Young (1999) has been used. The theory behind this

method, as well as computer simulations, was developed in chapter 6. The method

5



provides a gain in power by taking into account the ordering of p-values.

Most of this work was concentrating around classical hypothesis testing and

methods for adjusting and combining p-values. Chapter 7 was an attempt to look

at the behavior of Bayesian methods for characterization of heterozygote deficiency

and excess as if they were classical procedures. Similar comparisons exist in the

literature. For example, Carlin and Louis (1996) discussed frequentist performance

of point and interval estimators obtained from the Bayesian beta-binomial model.

Based on the coalescent process simulations of samples from admixed popu-

lations, it has been found that certain non-informative priors provide posterior

probabilities with good frequentist properties. It has been found that they com-

pare well with the previously suggested classical methods. These tests provide

additional benefits of Bayesian interpretations and entire plots of posterior dis-

tributions of coefficients measuring excess or the deficit of heterozygotes. These

methods are computationally much faster than frequentist exact tests.
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Chapter 2

EXACT TESTS FOR

ASSOCIATION BETWEEN

ALLELES AT ARBITRARY

NUMBERS OF LOCI

Zaykin D, Zhivotovsky L and Weir BS (1995)

GENETICA 96:169–178
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2.1 Abstract

Associations between allelic frequencies, within and between loci, can be tested for

with an exact test. The probability of the set of multi-locus genotypes in a sam-

ple, conditional on the allelic counts, is calculated from multinomial theory under

the hypothesis of no association. Alleles are then permuted and the conditional

probability calculated for the permuted genotypic array. The proportion of arrays

no more probable than the original sample provides the significance level for the

test. An algorithm is provided for counting genotypes efficiently in the arrays, and

powers of the test presented for various kinds of association. The powers for the

case when associations are generated by admixture of several populations suggest

that exact tests are capable of detecting levels of association that would affect

forensic calculations to a significant extent.

Keywords: Exact tests, allelic association, Hardy-Weinberg, Linkage

disequilibrium.
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2.2 Introduction

In the absence of evolutionary forces such as drift, selection, migration or mutation,

genotypic frequencies are expected to be given by the products of corresponding

allelic frequencies. Even if these forces are known to be present, however, it may be

that genotypic frequencies are very close to the allelic frequency products. There

are situations when it is convenient to be able to invoke this “product rule” for

multilocus genotypes, as in the use of genetic profiles for human identification.

A specific multilocus genotype is unlikely to have been seen in samples collected

for the purpose of estimating frequencies, even though all the constituent alleles

are present, and then the product rule offers a means of providing an estimate.

Of course, it is necessary first to test for consistency of genotype frequencies to

products of allele frequencies and such tests are covered in this paper.

With many loci and many alleles per locus, there are very many possible asso-

ciations among the frequencies of subsets of the alleles. Even for two alleles at two

loci, for example, there are six pairs of genes, four triples and one set of four genes

to be considered (Weir and Cockerham, 1989). If the only issue is whether allele

frequencies can be used to construct genotype frequencies, all these associations

are tested for simultaneously in a single test. This has the advantage of avoiding

problems with multiple tests, and the power of the test sometimes increases with

the number of loci and alleles per locus. If there is interest in some of the individual

associations, then specific tests can be constructed, and will be discussed here.

The primary purpose of this paper is to examine the use of “exact” tests,

meaning tests based on the probabilities of sets of alleles conditional on observed
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counts of subsets of the alleles. In general these tests are expected to perform well

and to avoid the problems faced by chi-square goodness-of-fit tests when expected

numbers are small. Because of the large number of possible multi-allelic arrays,

it is not possible to examine them all to compute significance levels for the tests.

Samples of arrays are generated by permutation, following the suggestion of Guo

and Thompson (1992).

2.3 General method

The general hypothesis is that there is no association among the frequencies of

constituent genes of a genotype. For locus l, each of the two alleles received by an

individual at that locus has probability pli of being allelic type Ali . If P1i1j ,2i2j ,···,LiLj

is the population frequency of the genotype A1i
A1j

A2i
A2j

· · ·ALi
ALj

, then the

hypothesis can be expressed as

P1i1j ,2i2j ,···,LiLj
= 2H

∏
l

pliplj (2.1)

where H is the number of loci that are heterozygous. When only one locus is being

considered and L = 1, Equation 2.1 is just the Hardy-Weinberg law. In other cases,

rejection of the hypothesis does not indicate whether it is allelic frequencies within

or between loci that are associated.

The development of a testing strategy is based on the multinomial distribution,

meaning that each member of a population is assumed to be equally likely to be

sampled, and that there is the same probability for each sample member having a

particular genotype. Sample sizes are therefore considered to be very much smaller
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than the population sizes. If A indicates a multilocus genotype, and nAg is the

number of individuals of type Ag in a sample of size n from a population in which

those genotypes have frequency PAg , then

Pr(nA1 , nA2 , · · · , nAG
) =

n!∏G
g=1 nAg !

G∏
g=1

(PAg)
nAg

The quantity G is the number of different genotypes possible.

Under the null hypothesis of Equation 2.1, allelic counts nli at locus l are multi-

nomially distributed with sample size 2n and probabilities pli . Furthermore, under

the hypothesis these distributions are independent over loci. The joint probability

of the sets of allelic counts {nli} is therefore

Pr({nl1}, {n2i
}, · · · , {nLi

}) =
L∏

l=1

(
(2n)!∏

i nli !

∏
i

(pli)
nli

)

and the probability of the genotypic counts conditional on the allelic counts is

Pr({nAg}|{nli}) =
n!∏G

g=1 nAg !

G∏
g=1

(PAg)
nAg

L∏
l=1

∏
i nli !

(2n)!
∏

i(pli)
nli !

Under the null hypothesis of complete independence of allele frequencies

Pr({nAg}|{nli}) =
n!
∏G

g=1 2nAg Hg∏G
g=1 nAg !

L∏
l=1

∏
i nli !

(2n)!
(2.2)

where count Hg is the number of heterozygous loci in genotype Ag, of which there

are nAg copies. Note that the unknown allelic frequencies pli have cancelled out of

this expression.

Genotypic arrays {nAg}, generated by permutation, with conditional proba-

bilities equal to or less than that of the observed sample array contribute to the

probability with which the null hypothesis would be rejected if it was true. This is
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the significance level, or p-value. In general, it is not feasible to calculate this quan-

tity exactly because of the prohibitively large number of genotypic count arrays

for a given array of allelic counts.

Gail and Mantel (1977) discussed methods for determining the numbers of two-

and three-dimensional contingency tables with fixed marginals. Another approx-

imate method for setting a lower bound on the number will suffice to show that

the number is indeed prohibitive. If P1 is the largest value of all the array proba-

bilities, then the number of arrays must be at least 1 + (1− P1)/P1 = 1/P1. This

would be the actual number if all arrays had probability P1. Similarly, if P1 is

the smallest of the T largest probabilities, the number of arrays must be at least

T + (1 − ∑T
i=1 Pi)/P1. For cases when all these P ’s are small, the lower bound

is given essentially by (1 −∑T
i=2 Pi)/P1. Since the ordering of all possible P ’s is

unknown, this bound is calculated by finding the set of T largest P ’s for a large

number of permuted arrays. Having T > 1 protects against under-estimation. The

procedure was applied to STR data from a sample of 182 people typed at loci with

6, 6, 9 and 14 alleles. With T = 1 and 65,000 permutations, the lower bound

was estimated to be of the order of 10748 in each of three separate determinations.

Obviously, it is not possible to examine all possible arrays.

Instead of identifying all arrays with lower conditional probabilities than the

sample, a set of arrays is generated randomly by permuting those alleles hypoth-

esized to be independent. For the hypothesis in Equation 2.1, this means that

alleles are permuted among individuals within loci, and independent permutations

performed for each locus. The proportion of permuted arrays as probable or less

probable than the sample forms an estimate of the significance level. If the true
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significance level is α, then with probability 0.95 the estimate will be within δ of

that value after m permutations if m ≈ 4α(1 − α)/δ2 ≤ 1/δ2. Hence, with 95%

probability, 10,000 permutations give an estimate accurate to two decimal places.

Further discussion of this approach was given by Guo and Thompson (1992).

Applying the permutation method to estimate significance levels can be per-

formed very efficiently. As all the arrays have the same allelic counts, for purposes

of comparison it is necessary to compute only

Ps =
∏
g

2nAg Hg

nAg !
(2.3)

although it is the logarithm of Ps that is computed in practice, using an algorithm

of Press et al. (1988). Furthermore, it is not necessary to step through all possible

multilocus genotypes, since only those with non-zero counts contribute to Equa-

tion 2.3. From now on, this will be indicated by gεz, meaning that only those

g values for which nAg > 0 are considered. The computer storage requirements

therefore depend on the sample size rather than the number of possible genotypes.

2.3.1 Algorithm

The greatest saving in computing time is made in the way of counting the number of

times each genotype appears in one of the genotypic arrays generated by permuting

alleles. A näıve way would be to assign each genotype a numerical identifier, sort

the identifiers and then count how many times each one occurs. For locus B with

alleles numbered 1 to nB, a possible identifier sB for genotype BiBj, j ≤ i is

sB =
i(i− 1)

2
+ j
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Values of this quantity range from 1 for B1B1 to SB = nB(nB + 1)/2 for BnB
BnB

.

If there is a second locus C with nC alleles, then the identifier sC ranging from 1

to SC for genotypes at that locus can be defined similarly, and the identifier for

two-locus genotypes is defined by

sBC = SC(sB − 1) + sC

which ranges from 1 for B1B1C1C1 to SBSC for BnB
BnB

CnC
CnC

. The extension to

multiple loci is straightforward. If necessary, the genotype can be recovered from

the identifier. In the two-locus case, for example,

sC =
iC(iC − 1)

2
+ jC = sBC(modSC)

sB =
iB(iB − 1)

2
+ jB =

(sBC − sC)

SC

+ 1

and the one-locus genotypes can be recovered from the one-locus identifiers by

i = 1 + integer part of[(
√

8sB + 1− 1)/2]

j = sB − i(i− 1)/2

The problem with this approach is the need to sort as many identifiers as there are

individuals in the sample. The binary search tree method now described is very

much faster.

The data set D has an element for every individual in the sample. A tree is

constructed with nodes for every distinct genotype in D. Each element of D is

placed on the tree, either at an existing node or at a new node, by comparing

its identifier to the identifiers for the previously placed elements. This placement
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procedure begins at the root node of the tree, and at each node, the tree is followed

in one of two directions depending on whether the identifier is greater than or less

than the identifier for that node.

The algorithm is as follows:

1. Build the binary search tree

a. Set counter i = 1. Take the element of D and insert it at the root node

as the node identifier (ID). Set the root internal counter C (the number

of times that genotype occurs in the sample) to 1 and the number of

nodes NN to 1.

b. Increment i. Take the ith element ri from D and recursively traverse

the tree. If ri is equal to the ID from some existing node, taking into

account that for each locus genotype AA′ is equal to A′A, increment

the internal counter C at that node by 1. Otherwise, if any outer node

(the top) is reached without finding an equal ID, insert ri into the tree

as a new node, setting the node for that ID to ri, setting its count C

to 1, and incrementing NN by 1.

c. If i < n, repeat the previous step.

2. Calculate ln Ps in Equation 2.3.

a. Set ln Ps = 0.

b. For each node j in the tree, calculate CjHj ln 2 − ln(Cj!) and add this

to ln Ps.
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c. If D is the original sample, set PO = Ps and set K = 0. If D is a

permuted array, increment K by 1 if ln Ps ≤ ln PO.

3. Permutation stage.

a. For each locus, randomly permute the 2n alleles in D for that locus.

Return to the binary search tree step. Do this step while the number

of permutations is less than the required number NR.

4. The estimated significance level is K/NR.

The binary search tree method for storing and retrieving the numbers of each

multilocus genotype in a sample performs best when the genotypes are not sorted.

This will certainly be the case for the permuted arrays. In the worst case, when

the genotypes have been sorted, the method degenerates to a sequential search.

Since the genotypes in the tree are stored in sorted order, it is guaranteed that

no parts of the tree other than the current sub-tree can contain the particular

genotype being sought. This means that only half the remainder of the tree needs

be considered after each comparison. The maximum number of nodes in the tree

cannot exceed the sample size, so that the average branch length remains the same

as the numbers of loci and alleles increase and the time to complete the algorithm

is therefore affected very little by these two numbers. The most time-consuming

part of the algorithm is the permutation stage. Its speed depends on the sample

size and number of loci, but not the total number of alleles per locus.

The binary search tree method has been programmed in C++, taking advantage

of features of that language. It may be helpful, however, to illustrate the nature
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of the algorithm using the more primitive genotype-identifiers described above.

Suppose a sample of 11 multilocus genotypes has been reduced to integer identifiers

by the method described above, and these identifiers are 24, 8, 37, 95, 24, 6, 28,

15, 23, 94, 27. The root node of the tree is 24, and at that stage C = 1, NN = 1.

The tree can be drawn under the rule that the direction of travel is up to the left

for identifiers smaller than that at the current node and up to the right for larger

identifiers. The resulting tree is shown in Figure 1. A 12th genotype with identifier

25 would be located after only three steps: 25 is greater than 24, less than 37, and

less than 28.

2.4 Other tests

More specific tests can be performed in order to characterize associations among

subsets of the alleles within genotypes, or to increase the power of detecting specific

associations. Details will now be given for tests on two-locus data.

2.4.1 Products of one-locus frequencies

There may be interest in whether two-locus genotypic frequencies can be rep-

resented as products of one-locus frequencies without assuming Hardy-Weinberg

equilibrium. The null hypothesis can be written as

PAiAjBkBl
= PAiAj

PBkBl
(2.4)

In the human identification case, such a situation might be appropriate when

there was evidence of Hardy-Weinberg disequilibrium at each locus, and two-locus
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genotypic frequencies were to be constructed as products of observed one-locus

genotypic frequencies.

The sample counts can be written in a two-way table with row totals being A-

locus genotype counts nij and column totals being B-locus counts nkl. The table

cell entries are the two-locus counts nijkl. The probability of the two-locus array

conditional on the two one-locus arrays, under the null hypothesis in Equation 2.4,

is

Pr({nijkl}|{nAij
}, {nBkl

}) =

∏
i,j nAij

!
∏

k,l nBkl
!

n!
∏

i,j

∏
k,l nijkl!

In this notation, the subscripts i, j range over all A-genotypes in the sample and

so include each of the rows in the table, and the subscripts k, l range over all B-

genotypes and so include all the columns in the table. In estimating the significance

level for the exact test of Equation 2.4, the only quantity to be calculated is

Ps = 1/
∏

gεz ng!, where g indexes each of the two-locus genotypes with a non-

zero count. Permutation proceeds by keeping the one-locus genotypes intact and

permuting these genotypes among individuals at one of the two loci.

2.4.2 Products of genotypic frequencies at one locus and

two allele frequencies at other locus

To see if the two-locus genotypic frequencies PAiAjBkBl
can be represented as the

product of the genotype frequency PAiAj
at one locus and the product of two allele

frequencies pBk
pBl

at the other locus, the hypothesis is

PAiAjBkBl
= 2HklPAiAj

pBk
pBl

(2.5)
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where Hkl is 1 if k 6= l and is 0 if k = l. A human identification setting for this test

may be when one of two loci show departures from Hardy-Weinberg frequencies.

The conditional probability of a sample under the hypothesis in Equation 2.5

is

Pr({nijkl}|{nAij
}, {nBk

}) =
2HB

∏
i,j nAij

!
∏

k nBk
!

(2n)!
∏

i,j

∏
k,l nijkl!

where HB is the number of individuals in the sample that are heterozygous at

locus B. Estimating the significance level in this case requires comparisons among

values of 2HB/
∏

gεz ng!, where ng is still the number of occurrences of the gth two-

locus genotype. Permutation proceeds by holding the A-locus genotypes intact

and shuffling all 2n B-locus alleles among individuals.

2.5 Discarding some genotypes

There are systems of genetic markers, such as VNTRs, where there is difficulty

in assigning genotypes unambiguously (Weir, 1992). A single band on an elec-

trophoretic gel may represent a homozygote, a heterozygote for two alleles with

similar copy numbers, or a heterozygote with an allele giving a band outside the

scoring region of the gel. It is only individuals scored as heterozygotes for which

there is no ambiguity and for which tests of association are required. Only the

heterozygotes in the original sample are used, and only permuted arrays where all

resulting individuals are heterozygous are used. Since every individual in every ar-

ray is heterozygous, Hg = L for every genotype Ag, and the conditional probability
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in Equation 2.3 for L loci becomes

Ps =
∏
gεz

2LnAg

nAg !

2.6 Using goodness of fit measures

Hypotheses have been tested here by determining the proportion of a large number

of permuted arrays that have a conditional probability no larger than that of the

sample. Instead of using conditional probabilities, arrays could be compared to the

hypothesized or expected array on the basis of a goodness of fit statistic such as

chi-square. The significance level would be the proportion of arrays with a larger

statistic than that of the sample.

For multilocus genotype Ag, the observed count is ng and the expected count

under the hypothesis of interest is written as ej. The chi-square statistic is the

usual

X2 =
∑
g

(ng − eg)
2

eg

It is necessary to sum only over the observed genotypes, and use can be made of the

fact that, since
∑

g ng =
∑

g eg = n, the statistic is [
∑

gεz(n
2
g/eg)] − n. It has been

suggested (Anscombe, 1981) that Karl Pearson may have invented this statistic as

an approximation for the exact test only because of the lack of computing resources

at that time.

The difference between goodness of fit tests and tests based on conditional

probabilities was explored in some detail by Maiste (1993). The difference in

the present case is greatest when there are so many different genotypes possible

22



that each one is likely to be unique in a sample. Certainly this is the situation for

forensic databases once five or more loci are scored. If each ng equals 1, the relevant

part of the chi-square test statistic is the sum of reciprocals of expected counts,

each of which will be less than 1. The test statistic tends to increase with the

number of possible genotypes. The conditional probability, by contrast, depends

on the reciprocal of the product of factorial counts, each of which is 1, and this

product does not change with the number of possible genotypes. As an extreme

example, consider the 20×20 array in Table 1 which represents a sample of 38 two-

locus genotype counts. The row and column totals are the one-locus counts. The

sample size is much less than the 400 possible two-locus genotypes, and each two-

locus genotype seen is unique in the sample. Other arrays, generated by permuting

the genotypes at one locus holding both sets of one-locus counts constant, must

have the same (when all two-locus counts remain at 0 or 1) or smaller (when some

counts are greater than 1) conditional probability so that the significance level

for the conditional probability test of no association is 1. However, the sampled

individuals fall into cells with low expected frequencies and this is reflected by the

goodness of fit test. Based on 17,000 shuffled arrays with the same marginals, the

significance level for the X2 test statistic was found to be 0.01. The same type of

difference can happen in sparse arrays when each sampled individual is not unique.

2.7 Numerical results

The performance of the various test statistics and strategies has been investigated

by applying them to simulated data sets.
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2.7.1 Two loci

Cockerham and Weir (1973) expressed two-locus genotypic frequencies in terms of

allelic frequencies and a set of disequilibrium coefficients. For example

PAABB = p2
Ap2

B + 2pADABB + 2pBDAAB + 2pApB∆AB

+ p2
ADB + p2

BDA + D2
AB + D2

A/B + DADB

For either two or four equally frequent alleles, genotypic frequencies were con-

structed with each disequilibrium coefficient in turn set to one-quarter of its max-

imum value, the other disequilibria being zero. Samples were taken from pop-

ulations with these genotypic frequencies. For locus A, for example, with two

equally frequent alleles, the coefficient DA is bounded by ±0.25 so that a popula-

tion would be constructed with DA = 0.0625. One thousand replicate samples of

size 100 were drawn from each population. For each sample and each test, signifi-

cance levels were computed from 10,000 permuted arrays. Although this number

of permutations corresponds to the procedure used to analyze real data sets, it

is not really necessary for simulation studies such as this. Oden (1991) and D.D.

Boos (personal communication) have shown that the number of permutations can

be set to a number very much smaller than the number of simulated data sets.

The entries in Table 2 are the proportions of the 1,000 simulated populations

in which the significance level was estimated to be less than or equal to 0.05, and

so are the powers of the tests for a 5% significance level. These powers are labelled

P1, P2, P3, P4 for the four hypotheses considered:

• P1: two-locus genotype frequency is product of four allele frequencies
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• P2: two-locus genotype frequency is product of two A allele frequencies and

B genotype frequency

• P3: two-locus genotype frequency is product of A genotype frequency and

two B allele frequencies

• P4: two-locus genotype frequency is product of two one-locus genotype fre-

quencies

Table 2 shows that the test for overall association, as indicated by P1, is working

well in all situations, and is most sensitive to departures from Hardy-Weinberg

disequilibrium. The power for detecting Hardy-Weinberg disequilibrium is greater

for four than for two alleles. As the number of alleles increases beyond four,

however, it has been found that power decreases when only one of the two loci

has departures from Hardy-Weinberg. For the tests where genotype frequencies at

one locus are held constant, the values of P2 and P3 show that Hardy-Weinberg

disequilibrium at the other locus can be detected. The test characterized by P4 is

the most powerful of the conditional probability tests but, of course, does not detect

departures from Hardy-Weinberg disequilibrium. Apart from the Hardy-Weinberg

tests, the powers of tests for four-allele data are less than those for two-allele data.

Larger sample sizes are needed to detect associations, although the loss of power

with number of alleles varies among the tests.

Powers for the two-allele case can be verified by the method described by Fu

and Arnold (1992). They discussed tests for 2× 2 tables, and showed how powers

could be calculated by restricting attention to those tables that make a significant

contribution to power. For hypothesis P1 when only DAB is non-zero, their method
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can be used for the table of four gametes A1B1, A1B2, A2B1, A2B2 with frequencies

pA1pB1 + DAB, pA1pB2 −DAB, pA2pB1 −DAB, pA2pB2 + DAB. Values very similar to

those in Table 2 are obtained. The method should be able to be extended to other

situations covered in the table.

It should be noted that the power values shown in Table 2 are, to some extent,

dependent on the method of simulating data sets. In real populations, where

evolutionary forces may create complex patterns of association, the powers may

well be higher. For example, P4 could be high because of the non-zero values of

several of the disequilibrium coefficients, whereas only one coefficient at a time was

allowed to be non-zero in the simulations.

2.7.2 Many loci

For more than two loci, power was studied only for the test of the hypothesis in

Equation 2.1 of no association between any of the alleles. Populations under the

alternative hypothesis were simulated in a different way from previously, and in

such a way to address the concerns of several authors (e.g. Lewontin and Hartl,

1991) that tests of association have low power as tests for population substructure.

Populations were constructed as amalgamations of several subpopulations that

were subjected to drift, and were simulated by the coalescent process (Hudson,

1990) using a program written by P.O. Lewis. The degree of drift was specified

by the coancestry coefficient θ ≡ FST (Weir, 1990) that measures the probability

of any two allelic genes within a randomly mating population being identical by

descent (relative to identity between populations), and serves as a measure of
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divergence of populations from an ancestral population. Apparent associations

between alleles were created by constructing samples as composites of samples of

size 20 from 10 such populations. These admixed samples serve to address the issue

of subpopulation structure that has caused concern over forensic calculations (e.g.

Nichols and Balding, 1991) and correspond to the situation where a population

consists of a collection of somewhat distinct subpopulations, but a sample is taken

from the population as a whole.

Only unlinked loci were simulated, and either 5 or 10 equally frequent alleles

at 1 to 100 loci were used. The number of replicate simulated populations used

to determine power values ranged from 500 to 1,000 and the number of permuted

arrays used to determine the significance level for each replicate was 3,200. Power

values in the case where θ = 0 (no association) should be 0.05.

When θ 6= 0, power always increased with the number of loci, and with the

number of alleles per locus. When θ = 0.05, for example, the power shown in

Table 3 is 0.969 for four loci and 10 alleles and 0.765 for 5 alleles, but it drops to

0.552 for 2 alleles (data not shown). The explanation is as follows. As the number

of loci and alleles per locus increases, there is an increasing chance that each

multilocus genotype in a sample becomes unique and the value of Ps in Equation 2.3

reduces to
∏

gεz 2Hg . Because of the Wahlund effect of reducing heterozygosity by

amalgamating 10 populations to provide the original simulated samples, the Ps

value is expected to be smaller for this sample than for a permuted array.

The same does not apply for tests on heterozygotes only since the number of

heterozygotes is the same in the sample and the permuted arrays. Indeed, the

entries in Table 4 show a decrease in power, and poor performance of the test
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when θ = 0 for more than two loci. As Equation 2.3 tends to a value of 2L, zero

power when θ = 0 suggests a very low chance of obtaining a sample with more

than one copy of any four-locus genotype. When θ 6= 0, power values are greater

than zero, since then the samples contain genotypes homozygous at some loci and

these individuals are discarded. This increases the chance of having some duplicate

genotypes in the remaining data.

2.8 Discussion

Testing for associations between alleles, within and between loci, can be performed

satisfactorily with exact tests conditional on allelic counts. Significance levels can

be found by permutation procedures. These tests are an alternative to those based

on normal statistics constructed as estimated disequilibrium coefficients divided

by their estimated standard deviations (Weir and Cockerham, 1989). In general,

Maiste (1993) found that conditional tests performed better than unconditional

tests, of which the variance-based tests are an example.

In the current forensic setting, any associations between neutral genetic mark-

ers are most likely to be due to population substructure. Comparing multi-locus

genotypic frequencies with the products of corresponding allelic frequencies is likely

to detect these associations with a power that increases with the number of alleles

per locus and/or the numbers of loci. Specifically, samples of size as small as 100

individuals have high powers for detecting the associations accompanying θ values

of 0.05 when several loci are used. This θ value is the one suggested by Nichols and

Balding (1991) as being a upper bound on actual values in human populations.
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The fact that associations are generally not found when exact tests are applied

(e.g. Evett et al. 1995) suggests that θ is less than this upper bound.

Conversely, Table 3 shows that the power is low when θ is 0.01. What is

the effect of not detecting this level of population substructure? The strength of

the evidence of a matching genotype between a evidentiary sample and a person

suspected of having contributed that sample can be measured as a likelihood ratio.

This is the ratio of the probability of the matching genotypes conditional on the

suspected person being the contributor to the probability when another person is

the contributor. The ratio, termed the forensic index by Weir (1994) by analogy to

the usual paternity index, changes very little for small θ values. For a heterozygous

matching genotype, when both alleles have frequencies of 0.05, the one-locus index

changes from 200 when θ = 0 to 145 when θ = 0.01 (Weir, 1994). The change is

greater for smaller allelic frequencies or larger θ values, but these are less likely for

the loci currently being used in human identification.

If the product rule is to be employed to estimate multi-locus genotypic fre-

quencies, it is necessary to check for associations between the constituent allelic

frequencies. If exact tests do not detect associations, it appears appropriate to base

forensic calculations on the product rule. Associations due to population substruc-

ture can be accommodated by modifications of the type proposed by Evett et al.

(1995) or Balding and Nichols (1993).
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Table 1 Sample two-locus array. Marginal totals are one-locus counts.

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 2

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 7

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 4

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2

5 2 1 4 2 1 1 1 1 1 1 5 1 2 1 2 2 2 2 1 38
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Table 2 Empirical powers of four tests for two loci with m = 2 or m = 4

equally frequent alleles when significance level is 0.05.

Nonzero

disequilibria m P1 P2 P3 P4

None 2 0.049 0.052 0.051 0.056

4 0.060 0.048 0.061 0.060

DA 2 0.462 0.484 0.058 0.051

4 0.951 0.976 0.041 0.056

DA + DB 2 0.778 0.486 0.498 0.065

4 1.000 1.000 0.995 0.051

DAB 2 0.708 0.744 0.742 0.783

4 0.150 0.216 0.218 0.239

∆AB 2 1.000 1.000 1.000 1.000

4 0.382 0.455 0.491 0.545

DAAB 2 0.980 0.990 0.970 0.980

4 0.275 0.351 0.294 0.324

DAAB + DABB 2 1.000 1.000 1.000 1.000

4 0.555 0.631 0.625 0.724

∆AABB 2 0.676 0.714 0.714 0.749

4 0.204 0.226 0.212 0.259
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Table 3 Empirical powers (with standard deviations) for exact multilocus test with

m = 5 or m = 10 equally frequent alleles per locus, when significance level is 0.05.

Number of 5-allele loci

θ m 1 2 3 4 10 15 25 50 75 100

0 5 0.050 0.048 0.052 0.044 0.052 0.056 0.047 0.051 0.047 0.049

(.01) (.01) (.01) (.01) (.02) (.01) (.01) (.01) (.01) (.01)

10 0.050 0.049 0.051 0.052 0.051 0.048 0.050 0.050 0.050 0.049

(.01) (.01) (.01) (.01) (.01) (.01) (.01) (.01) (.01) (.02)

0.005 5 0.053 0.062 0.074 0.089 0.098 0.147 0.145 0.244 0.275 0.354

(.01) (.01) (.01) (.01) (.02) (.02) (.02) (.03) (.02) (.03)

10 0.065 0.067 0.097 0.126 0.129 0.192 0.240 0.327 0.493 0.600

(.01) (.01) (.01) (.01) (.01) (.02) (.02) (.02) (.02) (.02)

0.007 5 0.055 0.082 0.098 0.096 0.127 0.197 0.226 0.370 0.459 0.561

(.01) (.01) (.01) (.01) (.01) (.02) (.01) (.03) (.03) (.02)

10 0.067 0.097 0.106 0.125 0.225 0.274 0.360 0.584 0.740 0.823

(.01) (.01) (.01) (.01) (.02) (.02) (.02) (.03) (.04) (.03)

0.010 5 0.065 0.078 0.104 0.119 0.217 0.270 0.342 0.519 0.682 0.809

(.01) (.01) (.01) (.01) (.03) (.02) (.03) (.02) (.03) (.02)

10 0.068 0.104 0.141 0.193 0.298 0.411 0.583 0.845 0.942 0.986

(.01) (.01) (.01) (.02) (.02) (.02) (.02) (.02) (.01) (.01)

0.050 5 0.148 0.323 0.661 0.770 0.989 1.000 1.000 1.000 1.000 1.000

(.02) (.02) (.02) (.02) (.01) (.00) (.00) (.00) (.00) (.00)

10 0.237 0.774 0.894 0.969 0.999 1.000 1.000 1.000 1.000 1.000

(.01) (.02) (.01) (.01) (.00) (.00) (.00) (.00) (.00) (.00)

0.100 5 0.434 0.856 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(.02) (.02) (.01) (.00) (.00) (.00) (.00) (.00) (.00) (.00)

10 0.757 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(.01) (.00) (.00) (.00) (.00) (.00) (.00) (.00) (.00) (.00)
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Table 4 Empirical power of exact tests with homozygotes excluded when sig-

nificance level is 0.05.

Number of 10-allele loci

θ 1 2 3 4

0 0.052 0.047 0.005 0.000

0.01 0.062 0.050 0.006 0.002

0.05 0.104 0.065 0.019 0.007

0.10 0.334 0.292 0.083 0.014
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Figure 2.1: Binary Search Tree.
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Chapter 3

CLOSED MULTIPLE TESTING

ADJUSTMENTS FOR

HARDY-WEINBERG

EQUILIBRIUM
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3.1 Abstract

We propose a closed multiple testing technique for evaluating the significance of

tests for association between alleles. The procedure provides a global test for

association over all loci as well as individual p-values adjusted for multiple testing.

The procedure has high power when all loci are subject to equal evolutionary

processes causing deviations from the equilibrium. Individual adjustments are

feasible for moderate numbers of loci (k), with 2k − 1 amount of computations,

but very good approximations that require at most k(k − 1)/2 tests are available.

The global exact test can be performed in all cases.

3.2 Introduction

For a family of hypotheses {H1, ..., Hk}, the family-wise error rate (FWER) is

defined as

FWER = Pr(reject one or more Hi, i ∈ S | Hi, i ∈ S are true) (3.1)

where S is any subset of K. The closure method was proposed Marcus, Peritz and

Gabriel (1976) as a powerful technique to strongly control FWER. The multiple

testing procedure is said to control FWER in the strong sense if FWER ≤ α

regardless of which subset of null hypotheses happens to be true (Westfall and

Young, 1993).

The closure of the family of hypotheses {H1, ..., Hk} consists of the set of all

intersection hypotheses, HS = ∩i∈SHi for S ⊆ K. This assumes that an α-level

test TS is available for each HS. The closed testing procedure rejects HS at level
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α if every HJ such that S ⊇ J is rejected by TS.

It is easy to see that this procedure controls FWER. In order to reject one

or more true null hypotheses (event A) we need to reject at the α-level both

individual hypotheses and the intersection hypotheses containing them (event B).

The probability of A is the FWER. But

Pr(A) = Pr(A and B)

= Pr(B) Pr(A | B). (3.2)

Now, because Pr(B) = α and Pr(A | B) ≤ 1, FWER ≤ α.

It is clear from the statement and the proof of the closure principle that tests

at different intersections (or “nodes”) need not be the same, as long as all tests to

be applied have a size ≤ α and are pre-specified.

Some multiple testing procedures result from the application of the closure

principle. For example, the step-down procedure of Holm (1979) follows if the

Bonferroni-adjusted minimum p-value is a test statistic for all HS. Holm’s proce-

dure adjusts pi as p∗i = pi(k− i+1), where pi’s are ordered from the smallest to the

largest. The procedure stops when it reaches the first p∗i > α. If the Bonferroni-

adjusted minimum p-value is a test statistic for the intersection hypothesis, then

having rejected the hypothesis with all tests, all smallest subsets that include the

same min p are rejected automatically, because of their smaller Bonferroni mul-

tipliers. The (k − 1)-sized hypothesis that does not involve that min-p has the

second smallest p-value of the k-sized hypothesis as its own min p. Therefore, as

long as H1 is rejected, H2 will be rejected if (k − 1)p2 ≤ α and Holm’s procedure

follows.
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In this paper, we concentrate on adjustments with the application to testing for

Hardy-Weinberg equilibrium. We suggest that in the presence of equal evolutionary

forces acting upon all loci, the intersection hypotheses are more appropriately

tested with a test statistic that combines information over all loci.

3.3 Method

Zaykin et al. (1995) suggested an algorithm for performing exact tests at arbitrary

numbers of loci. Lewis and Zaykin (1997) implemented that algorithm in the GDA

computer package. As a default, GDA performs exact tests for disequilibrium at

each locus, then for all pairs, triples, etc., proceeding up to a set of all k loci. The

total number of tests (NT ) is the number of possible subsets of loci:

NT =
k∑

i=1

(
k

i

)
= 2k − 1 (3.3)

To test the intersection hypothesis at each subset of loci, S, we define a test statistic

based on the conditional probability of observing a subset of one-locus genotype

counts given allele counts at S.

Pr ({ns∈S,ij} | {ns∈S,i}) =
∏
u∈S

n!2Hu
∏

i nui!

(2n)!
∏

i,j nuij!
(3.4)

where 2Hu is the number of heterozygotes at the locus u, nuij is the count of

genotype ij at the locus u, and nui is the number of alleles of type i at the locus u.

The test statistic, T , is a proportion of genotypic arrays with the same allelic counts

for which this probability is at least as small as Pobs, the probability calculated

for the observed data.

T = E
{
I
[
Pr ({ns∈S,ij} | {ns∈S,i}) ≤ Pobs

]}
(3.5)
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In practice, the expectation is obtained by averaging over a large number of random

permutations. The method is expected to perform well when all loci are subject to

the same evolutionary forces creating deviations from the random pairing of alleles.

The closure method starts with testing the global hypothesis involving all k loci.

If this hypothesis that there are no genetic loci in Hardy-Weinberg disequilibrium

is rejected, the algorithm proceeds with testing subsets of k− 1 loci, etc., down to

the single-locus tests. For each intersection hypothesis S, the p-value is given by

the largest p-value among the subsets that include S.

A similar procedure would result from the application of Fisher’s combined

probability test to p-values obtained from testing for HWE at each locus. Such a

method will be implemented in the next release of PROC MULTTEST of SAS com-

puter package (Peter Westfall, personal communication). Fisher’s test is based on

the fact that, under the null hypothesis, −2
∑k

i ln pi has a chi-square distribution.

However, one reason to prefer the global test based on (3.4) is that it accounts

for the discrete nature of the test while Fisher’s combined probability test assumes

a continuous uniform distribution of p-values under the null hypothesis. Another

reason is that, as was pointed out by Rice (1990), Fisher’s combination test is

inappropriate for testing whether several tests support the same null hypothesis.

Fisher’s combination test is biased in the favor of p-values that are small and Rice

(1990) suggests that the test of Stouffer et al. (1949) should be preferred. The test

of Stouffer et al. (1949) is based on normal-transformed p-values. If Φ(x) denotes

the probability distribution function for the standard normal distribution,

Φ(x) =
∫ x

−∞

1√
2π

e−z2/2dz (3.6)
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then each pi-value can be transformed to a standard normal score by

zi = Φ−1(1− pi) (3.7)

The sum z =
∑

i zi/
√

k also has a standard normal distribution. The combined

p-value is, therefore,

p = 1− Φ

(
1√
k

k∑
i=1

Φ−1(1− pi)

)
(3.8)

Indeed, we found that for sufficient sample sizes and many alleles per locus, an

application of the test by Stouffer et al. (1949) often results in p-values that are

the same up to several decimal points as those based on (3.4), for all intersection

hypotheses. An example of such data set is given in tables 3.1 and 3.2.

3.4 Results and discussion

Tables 3.1 and 3.2 give the genotypic distribution and an example of applying the

method to the simulated data with 4 loci. The sample of 100 genotypes scored at

four loci was generated by the coalescent process (Hudson, 1990) with consequent

admixture. Ten populations drifted until the amount of divergence measured by

the coancestry coefficient (Weir, 1996) reached the value of 0.15.

Table 3.1 lists subsets of loci corresponding to each intersection hypothesis,

raw p-values obtained by the composite test (3.5), p-values adjusted by the closing

procedure, and p-values obtained by applying the Hochberg’s (1988) correction.

Hochberg’s method is a step-wise FWER-controlling multiple testing procedure

and is less conservative than the usual Bonferroni correction. Hochberg’s method
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is to order pi’s, {p1, ..., pk}, start with i = k, and once pj ≤ α/(k − j + 1), then

reject all Hi for i ≤ j.

p-values obtained through the closure method appear to be smaller than those

adjusted by Hochberg’s method. However, it is more interesting to study how a

procedure like this would perform on average, both in the presence and in the

absence of population disequilibrium.

We repeated the simulations, comparing how often the individual null hypothe-

ses of HWE are rejected with Hochberg and closure methods. Under the null

hypothesis (θ = 0), the closure method is found to be more conservative than

Hochberg’s, but it is more powerful in the presence of Hardy-Weinberg disequilib-

rium. These results are presented in table 3.3. In the cases studied, the closure

method rejected about one more hypothesis, on average.

The usage of the procedure is broader than merely deciding which of the indi-

vidual hypotheses to reject. It will often happen in practice, that in a set of k loci,

some of the individual hypotheses will be rejected, but others will be significant

down to, say, pairs of loci. This will indicate that there is evidence that one of the

loci or both loci in the pair are in disequilibrium, but there is not enough statistical

power to decide which. The global test including all loci is the most powerful one.

If it is the only test that has been rejected, the conclusion is that k genetic loci

provide overall evidence against the null hypothesis of the HWE, without ability

to indicate specific individual loci.

The proposed global test can be carried out for any number of loci, but appli-

cability seems to be limited to tens of loci because 2k − 1 intersection hypotheses

need to be tested. Since we found that Stouffer et al.’s test closely approximates
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the exact method, it is possible to avoid testing most of the intersections.

It follows from the symmetry of the distribution given by (3.8) that combining

p-values that are greater than the critical point, ξ=0.5, always results in increasing

the combined p-value towards one, and combining p-values that are smaller than

ξ always results in decreasing of the combined p-value towards zero. Therefore, if

we are concerned only with adjusting individual p-values that are below α ≤ 0.5,

this test provides the following shortcut that avoids testing all 2k − 1 hypotheses.

First, note that for pi ≤ α, the solution of

α = 1− Φ

[
1√
2

(
Φ−1(1− pi) + Φ−1(1− y)

)]
(3.9)

provides the value of y such that all pairs pi, pj, where pj > y give combined p-

values above α, and following the closure principle the hypothesis Hi is not rejected.

Such values could be obtained numerically (table 3.4). If there is no pj > y, then

for the ordered set of pj’s (j = 1, ..., k) the adjusting procedure for any pi is as

follows. Compute (3.8) for most stringent subsets:

{pi, pk}

{pi, pk, pk−1}

{pi, pk, pk−1, pk−2}

...

{pi, pk, pk−1, pk−2, ..., pi+1}

The adjusted pi is given by the maximum of these values. Note that many subsets,

such as, for example, {pi, pk−1} do not need to be considered, because they will

yield p-values smaller than the one for {pi, pk}. Therefore, the computational

45



reduction is from 2k − 1 to at most k(k − 1)/2 evaluations of (3.8).

These considerations lead to a way of locating smallest subsets of loci that

convey evidence of significance, because only a few tests need to be rejected in

order to satisfy the closure principle.

The same shortcut method can be used if Fisher’s combination test is applied

instead, but somewhat more work is required, since the critical point (ξ) depends

on the value of k. Let

W = −
k∑
i

ln pi (3.10)

When all k null hypotheses are true,

W ∼ Gamma(k, 1) (3.11)

with the mean and the variance equal to k. When k is large,

pw = Pr
(
W > −

∑
ln ξ

)
(3.12)

can be approximated by

pz = Pr
(
Z > −

√
k(ln ξ + 1)

)
(3.13)

where Z is the standard normal variable. When ξ = 1/e, this probability is 0.5,

so that the critical point is given by 1/e when the number of tests is infinite. For

a finite number of tests, the value ξ can be determined numerically. The values of

ξ in the table 3.5 were calculated by using the golden section search (Press et al.,

1988) on the function

f(x, k) = abs {(Ψ(k,−k ln x)− x)/x} , (3.14)
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where Ψ(·) is the Gamma(k, 1, x) cumulative distribution function. Values in the

table show that about two thousand tests are required for the critical point to be

sufficiently close to the value of 1/e = 0.36788, therefore numerical calculations

like those described here are needed in practice.

In the case of Fisher’s test, the equation analogous to (3.9) is

α = 1−
∫ 1

ypi

∫ 1

v
(1/w) dw dv

= piy (1− ln pi − ln y) (3.15)

with solution

y = − α

pi prln
(
−α

e

) (3.16)

where prln(x) denotes the product logarithm function, defined as the function that

solves x = wew for w. Alternatively, the solution can be found numerically. Table

3.6 gives values of y for three levels of α (1%, 5%, and 10%) and a range of p-values.
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Table 3.1: An example of the closure test for HWE simulated under drift and

admixture

loci subset p-value closure Hochberg’s

1 0.00621 0.01479 0.02484

2 0.33184 0.33184 0.33184

3 0.03841 0.06250 0.11523

4 0.06887 0.09715 0.13774

1/2 0.01479 0.00534

1/3 0.00163 0.00345

1/4 0.00268 0.00534

2/3 0.06250 0.06250

2/4 0.09715 0.09715

3/4 0.01334 0.02128

1/2/3 0.00345 0.00345

1/2/4 0.00534 0.00534

1/3/4 0.00066 0.00139

2/3/4 0.02128 0.02128

1/2/3/4 0.00139 0.00139
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Table 3.2: Genotype distribution for the example simulated under drift and ad-

mixture

locus 1 locus 2 locus 3 locus 4

BB:5 BB:7 BB:9 BB:8

BC:4 BC:4 BC:4 BC:8

BD:5 BD:7 BD:2 BD:6

BE:7 BE:10 BE:7 BE:4

BF:8 BF:13 BF:8 BF:4

CC:13 CC:2 CC:3 CC:6

CD:8 CD:6 CD:10 CD:11

CE:6 CE:6 CE:8 CE:3

CF:4 CF:6 CF:5 CF:5

DD:10 DD:4 DD:7 DD:14

DE:9 DE:5 DE:8 DE:8

DF:6 DF:13 DF:6 DF:10

EE:7 EE:8 EE:8 EE:4

EF:5 EF:5 EF:11 EF:5

FF:3 FF:4 FF:4 FF:4

51



Table 3.3: Average numbers of rejections for the HWE test per set of k loci at the

nominal level of 10%.

θ k Na β (closure) β (Hochberg’s)

0.100 4 5 0.490 0.717

0.150 4 5 2.372 1.113

0.150 5 10 4.345 3.188

0.125 6 15 5.356 4.220

0.125 7 15 6.309 5.161

θ is the coancestry coefficient; k is the number of loci; Na is the number of alleles;

β is the average number of hypotheses rejected per simulation.
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Table 3.4: Values of y for different pi’s and levels of α (Stouffer et al.’s test)

pi y, at α =1% pi y, at α =5% pi y, at α =10%

1e-05 0.83521 1e-05 0.97373 1e-05 0.99291

0.0004 0.52505 0.002 0.70952 0.004 0.79945

0.0008 0.44668 0.004 0.62775 0.008 0.72459

0.0012 0.39964 0.006 0.57377 0.012 0.67175

0.0016 0.36613 0.008 0.53297 0.016 0.63006

0.0020 0.34025 0.010 0.50007 0.020 0.59536

0.0024 0.31925 0.012 0.47248 0.024 0.56552

0.0028 0.30166 0.014 0.44872 0.028 0.53929

0.0032 0.28658 0.016 0.42788 0.032 0.51587

0.0036 0.27342 0.018 0.40934 0.036 0.49471

0.0040 0.26178 0.020 0.39265 0.040 0.47540

0.0044 0.25136 0.022 0.37749 0.044 0.45765

0.0048 0.24195 0.024 0.36362 0.048 0.44124

0.0052 0.23339 0.026 0.35084 0.052 0.42598

0.0056 0.22556 0.028 0.33902 0.056 0.41172

0.0060 0.21834 0.030 0.32802 0.060 0.39835

0.0064 0.21166 0.032 0.31775 0.064 0.38577

0.0068 0.20545 0.034 0.30813 0.068 0.37390

0.0072 0.19966 0.036 0.29908 0.072 0.36267

0.0076 0.19424 0.038 0.29054 0.076 0.35202

0.0080 0.18915 0.040 0.28248 0.080 0.34189

0.0084 0.18435 0.042 0.27484 0.084 0.33224

0.0088 0.17983 0.044 0.26758 0.088 0.32304

0.0092 0.17554 0.046 0.26069 0.092 0.31425

0.0096 0.17148 0.048 0.25411 0.096 0.30583

0.0100 0.16762 0.050 0.24783 0.100 0.29777
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Table 3.5: Values of ξ critical point for different numbers of hypotheses (Fisher’s

combination test)

k Critical point, ξ

2 0.28467

3 0.29916

4 0.30799

5 0.31409

6 0.31863

7 0.32218

8 0.32505

9 0.32744

10 0.32947

11 0.33122

12 0.33275

13 0.33410

14 0.33530

15 0.33639

16 0.33737

17 0.33827

18 0.33909

19 0.33984

20 0.34054

25 0.34339

1000 0.36396

1900 0.36504
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Table 3.6: Values of y for different pi’s and levels of α (Fisher’s test)

pi y, at α =1% pi y, at α =5% pi y, at α =10%

1e-05 0.99999 1e-05 0.99999 1e-05 0.99999

0.0004 0.99999 0.002 0.99999 0.004 0.99999

0.0008 0.99999 0.004 0.99999 0.008 0.99999

0.0012 0.99999 0.006 0.99999 0.012 0.99999

0.0016 0.81824 0.008 0.99999 0.016 0.99999

0.0020 0.65459 0.010 0.87049 0.020 0.99999

0.0024 0.54549 0.012 0.72541 0.024 0.85213

0.0028 0.46756 0.014 0.62178 0.028 0.73039

0.0032 0.40912 0.016 0.54406 0.032 0.63910

0.0036 0.36366 0.018 0.48361 0.036 0.56808

0.0040 0.32730 0.020 0.43525 0.040 0.51128

0.0044 0.29754 0.022 0.39568 0.044 0.46480

0.0048 0.27275 0.024 0.36271 0.048 0.42606

0.0052 0.25177 0.026 0.33481 0.052 0.39329

0.0056 0.23378 0.028 0.31089 0.056 0.36520

0.0060 0.21820 0.030 0.29016 0.060 0.34085

0.0064 0.20456 0.032 0.27203 0.064 0.31955

0.0068 0.19253 0.034 0.25603 0.068 0.30075

0.0072 0.18183 0.036 0.24180 0.072 0.28404

0.0076 0.17226 0.038 0.22908 0.076 0.26909

0.0080 0.16365 0.040 0.21762 0.080 0.25564

0.0084 0.15585 0.042 0.20726 0.084 0.24346

0.0088 0.14877 0.044 0.19784 0.088 0.23240

0.0092 0.14230 0.046 0.18924 0.092 0.22229

0.0096 0.13637 0.048 0.18135 0.096 0.21303

0.0100 0.13092 0.050 0.17410 0.100 0.20451

55



Chapter 4

COMBINING INDEPENDENT

P -VALUES
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Summary

We present a new procedure for combining p-values from a set of L independent

hypothesis tests. Our procedure is to take the product of only those p-values less

than some specified cut-off value and to evaluate the probability of such a product,

or a smaller value, under the overall hypothesis that all L hypotheses are true. We

give an explicit formulation for this overall p-value, and find by simulation that it

can provide high power for detecting departures from the overall hypothesis. Once

the overall hypothesis is rejected, an adjustment procedure with strong family-wise

error protection is available for individual p-values.

Key words: p-values, multiple tests, Bonferroni.

4.1 Introduction

When L independent tests of the same hypothesis are all conducted with the same

significance level α, then the probability of finding at least one significant result

among the L is greater than α. The resulting problem of interpreting the results

from multiple tests has been considered many times (e.g. Westfall and Young,

1993). It is also recognized (e.g., Rosenthal, 1990) that a series of non-significant

results may together suggest significance: “Two 0.06 results are much stronger

evidence against the null than one 0.05.” This situation led Fisher (1932) to his

method for combining significance values, although it is the problem of possibly

spurious single significant tests that is of more concern to us. We have been faced

with this situation in two genetic contexts: testing for allelic independence at
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several loci from several samples (Zaykin et al., 1995), and testing for marker-

disease associations at several marker loci (Kaplan et al., 1995).

We concentrate here on methods that combine p-values from several tests in

order to provide a p-value for the overall hypothesis that all single hypotheses are

true. If this overall hypothesis is rejected, it is then possible to obtain adjusted

p-values for the individual tests. These individual adjustments are derived based

on the closure principle of Marcus et al (1976) and yield p-values that are at least

as small as ones obtained with the step-wise method of Hochberg (1978).

We review the methods of Edgington (1972), Fisher (1932), Stouffer et al.

(1949), and Wilkinson (1951) and describe a new procedure, the “truncated prod-

uct method,” that appears to have good power properties. In the language of

Hedges and Olkin (1985), the procedures we discuss are termed omnibus or non-

parametric because they depend only on the significance values of individual tests

and not on the form of the underlying data.

4.2 Previous methods

We suppose that tests have been conducted for each of L hypotheses Hi, i =

1, 2, . . . , L. For each test the p-value pi is calculated: if Hi is true, this is the

probability of observing a test statistic as extreme as or more extreme than the

observed value in the direction of rejection (Popper, 1995). However, (1−pi) is also

the value of the probability distribution function of the test statistic and therefore

it is uniformly distributed on the interval [0, 1]. This holds for any continuous test

statistic. Moreover, −2 ln pi has a chi-square distribution with two df. This led
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Fisher (1932) to note that the statistic

t = −2
L∑

i=1

ln pi = −2 ln(
L∏

i=1

pi)

has a chi-square distribution with 2L df when all L hypotheses are true. Therefore,

the p-value for the hypothesis that all Hi are true is the probability of a χ2
2L variable

being greater or equal to the observed value t. We will write this overall hypothesis

as HT .

Edgington (1972) preferred to work with the sum of the p-values, and he gave

the probability of the sum of L uniform [0, 1] variables being less than or equal to

S as

S′∑
r=0

(−1)r
(

L

r

)
(S − r)L

L!

where S ′ is the largest integer less than S. This probability also serves as the p-

value for the hypothesis HT . Hedges and Olkin (1985) pointed out that one large

p-value can overwhelm many small p-values with this approach.

For L independent tests, Wilkinson (1951) noted that the number of p-values

less than some quantity τ has a binomial distribution B(L, τ) when HT is true.

The probability of finding at least k values less than τ is

L∑
i=k

(
L

i

)
τ i(1− τ)L−i

Wilkinson set τ to the single-test significance level α. He used this binomial ex-

pansion to note, for example, that two tests significant at the 5% level in 14 tests

does not imply that two events have occurred where each has a 5% probability,

but that one event with a 15% probability has occurred. If k = 1, the probability

becomes [1− (1−τ)L] suggesting that τ = 1− (1−α)1/L for an overall α-level test.
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This is the basis for the usual Bonferroni correction. Any individual test must be

significant at the level τ in order for the overall level to be α.

An alternative procedure (Stouffer et al., 1949) uses normal-transformed p-

values. If Φ(x) denotes the probability distribution function for the standard

normal distribution

Φ(x) =
∫ x

−∞

1√
2π

e−z2/2dz

then each pi-value can be transformed to a standard normal score, when the hy-

pothesis is true, by

1− pi = Φ(zi)

zi = Φ−1(1− pi)

and z =
∑

i zi/
√

L is also standard normal. The p-value for hypothesis HT is,

therefore,

p = 1− Φ

(
1√
L

L∑
i=1

Φ−1(1− pi)

)

4.3 Truncated product method

As a procedure that combines the features of Fisher’s product method and Wilkin-

son’s truncation method, we suggest the use of the product W of all those pi values

that do not exceed some fixed value τ :

W =
L∏

i=1

piΨ(pi ≤ τ)

where

Ψ(pi ≤ τ) =

 1, pi ≤ τ

1/pi, pi > τ
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We note that this is a special case of the weighted function Q of p-values

discussed by Good (1955)

Q =
∏
i

pwi
i

in which some weights are equal to 1 and some are equal to 0. Good gave the

distribution of Q only in the case where all the weights are different.

Under the null hypothesis HT , the distribution of W can be evaluated by con-

ditioning on the number, k, of the pi’s less than τ :

Pr(W ≤ w) =
L∑

k=1

Pr(W ≤ w|k) Pr(k)

=
∫ w

0

L∑
k=1

(k ln τ − ln t)k−1

(k − 1)!
I(τ k > t)

(
L

k

)
(1− τ)L−kdt

=
L∑

k=1

(
L

k

)
(1− τ)L−kG(w, τ, k) (4.1)

where

G(w, τ, k) =

 w
∑k−1

s=0
(k ln τ − ln w)s

s! , w ≤ τ k

τ k, w > τ k

Theory related to this statistic rests on Simes’ (1986) inequality. If the pi’s are

ordered, and if the Hi are all true, then with probability (1−α), pi > iα/L for all

i = 1, 2, . . . , L and for any α between 0 and 1, provided the L test statistics are

independent and continuous. The derivation of equation (4.1) is given in Appendix

1.

The individual adjustments are then available through the application of the

closure principle of Marcus et al. (1976). Generally, the procedure considers all

possible combination hypotheses obtained via intersection of the set of individual

hypotheses of interest. If an individual hypothesis and all intersections that contain
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it as a component are rejected by an appropriate α-level test, then the closure

principle states that the given hypothesis can be also rejected, at the level α. The

closure procedure controls the family-wise error rate (FWER) strongly, meaning

that FWER ≤ α regardless of which subset of null hypotheses happens to be true

(Westfall and Young, 1993). The total number of combination hypotheses (Nh) is

Nh =
L∑

i=1

(
L

i

)
= 2L − 1 (4.2)

which grows quickly with L and often limits applicability of the method. Fortu-

nately, if τ is chosen to be ≤ α, only (L+1) tests need to be performed. These are

the global test with all j p-values that are ≤ τ , and the combination hypotheses

involving one p-value ≤ τ with the rest (L − j) p-values that are greater than τ .

The L combination hypotheses of the size (L− j +1) give p-values bounded by the

Sidak’s correction with (L− j + 1) tests, i.e. the adjusted p-value, p∗i for pi ≤ τ is

equal to

1− (1− pi)
L−j+1 (4.3)

in the case when pi is exactly τ .

The proof that for τ ≤ α the suggested adjustment satisfies the closure principle

consists of inspecting subsets and noting that (4.1) is an increasing function of L

and a decreasing function of W , so that rejecting a combination hypothesis Hi

of size (L − j + 1) automatically leads to rejection of all subsets that contain i,

including the set of all L (the global test).
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4.4 Comparison of methods

We compared the various procedures described above on the basis of power to

detect departures from null hypotheses concerning the mean of a normal distribu-

tion, H0 : µ = µ0, when the variance σ2 is known. The alternative hypotheses are

HA : µ = µA > µ0. We transform the mean x̄ of a sample of size n to give the

usual z test statistic

z =

√
n(x̄− µ0)

σ

Under H0, z has the standard normal distribution, and under HA it is distributed

N(γ, 1) where γ =
√

n(µA − µ0)/σ.

When H0 is true, the p-values could be written as p0:

p0 = Pr(Z ≥ z)

z = Φ−1(1− p0)

where Z is the standard normal variable. The values of p0 are distributed uniformly

on [0, 1]. When HA is true the p-value is

pA = Pr(Z ≥ z − γ)

= 1− Φ
(
Φ−1(1− p0)− γ

)

Therefore, if u is drawn randomly from the uniform distribution on [0,1], p-

values under the null and alternative hypotheses can be calculated as (1 − u)

and Φ (Φ−1(1− u) + γ). This provides us with a means for generating p-values

under each hypothesis rather than generating samples, calculating test statistics

and then determining p-values.
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4.5 Results

In the first place we simulated the case where all L hypotheses were true, and

rejected the overall hypothesis HT that all are true when the overall p-value was

less than 0.05.

In Table 1 we show the proportion of 100,000 simulations that resulted in

rejection, for two values of τ , 0.05 and 0.5. The truncated product method gave

values consistent with the nominal 0.05 value .

We then allowed hA of L = 25 hypotheses to be false, but with the same value

of γ so that the tests of each of these hA hypotheses has the same power. We set

γ = 1.64 so that these powers had the nominal value of 0.50. All other L − hA

hypotheses were set to be true. The p-value for the overall hypothesis HT was

then calculated by the methods of Edgington, Fisher, Stouffer, Wilkinson (with

τ = 0.05) and by the truncated product method with τ = 0.05. Empirical powers

are shown in Table 2. Fisher’s procedure and the truncated product method had

substantially the same performance and the other three methods did not perform

well for low numbers of false hypotheses.

The alternative hypotheses hA are all one sided, but in Table 3 we allow some

tests to have positive γ and some negative γ. With this combination of different

directions of departure from the null, it is clear that the truncated product method

performs the best. Wilkinson’s procedure now performs better than Fisher’s pro-

cedure, but the other two methods do not perform well.

As a final example we present an analysis of a set of genetic data (Scholl et

al., 1996). Likelihood ratio tests for Hardy-Weinberg equilibrium (Weir, 1996)

64



were conducted at seven loci in samples from three Native American populations.

The p-values are shown in Table 4 and, as is common in such situations, some of

them are low. In the first place, we combined p-values over samples for each locus.

This addresses the hypothesis that none of the three sampled populations have

departures from Hardy-Weinberg, and so is locus-specific. Secondly, we combined

p-values over loci for each sample to address the hypothesis that none of the loci

within a sampled population departs from Hardy-Weinberg. This procedure is

population-specific. For the whole set of p-values we have two possibilities. We

could combine p-values over all 21 tests to address the hypothesis that none of the

loci departed from Hardy-Weinberg in any of the sampled populations, and these

p-values are shown in the table. Alternatively, we could use the locus-specific p-

values to make statements about each locus separately but then we may want to

use the procedures of this paper to give a p-value for the hypothesis that none

of the loci departed from Hardy-Weinberg. With Fisher’s procedure, the overall

p-value for loci is 0.281 and with the truncated product method it is 0.276. We

could also operate on the population-specific values in order to make statements

about the populations. With Fisher’s procedure, the overall p-value is 0.143 and

with the truncated product method it is 0.173. Note that we have ignored the

possibility of between-locus dependencies in these tests.

The combination of p-values in Table 4 provides a more satisfactory interpre-

tation of the data than simply ignoring the values in excess of 0.05, and using a

Bonferroni correction to claim that the remaining low value (GYPA for Navajo) is

not significant. There is support from the truncated product method for regard-

ing the GYPA value to be significant, and from Fisher’s method for regarding the
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Navajo population as having departures from Hardy-Weinberg.

4.6 Conclusions

Debate over the use of p-values in summarizing the results of hypothesis tests

continues (Hagen, 1997) but the values are routinely calculated and reported in

many disciplines. Many genetic studies lead to p-values from tests on multiple

loci in multiple samples and it is necessary to take this multiplicity into account

when drawing inferences. Among the approaches that have been considered in the

past it appears that Fisher’s method, of taking minus twice the logarithm of the

product of a set of L p-values and recognizing that this quantity is distributed as

chi-square with 2L df when all L hypotheses are true, is a good way of providing

an overall p-value.

We have suggested here an alternative procedure, which also takes into account

the size of L p-values but uses only the small ones. By “small” we mean a conven-

tional values such as 0.05. Instead of asking whether the set of L tests contains

any evidence for departures from all L hypotheses, our procedure can be used to

ask whether any of significant test statistics are indeed significant. By focusing

on only the set of small p-values we appear to have increased the overall power,

especially in situations where a small subset of the hypotheses are false but false

in opposite directions.

An important feature of the method is that individual p-value adjustments, and

also adjustments for pairs, triples, etc, are readily available from the application

of the closure principle. This will be useful in exploratory analysis, where many
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tests are involved. In exploratory analysis, some of the effects might be declared

to be likely “real” and corresponding experiments worth of a replication. It should

be noted, that even methods with the strong FWER protection have larger pro-

portions of falsely rejected hypotheses than α, given that some hypotheses have

been in fact rejected. This increase of the FWER, conditional upon rejection, can

be large (Zaykin et al., 1999) and it is reasonable to allow that, in those studies

where positive results are found, a potentially large percentage of them might be

in error.

The truncated product method also has potential outside of the genetic context.

For example, in meta-analysis of published data there is a well known problem

of the “publication bias”, when only successful findings are reported. Models

have been developed for estimating the total number of studies (e.g. Gleser and

Olkin, 1996), and therefore an adequate inference can be made using the truncated

product method.
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4.8 Appendix 1

When H0 is true and τ < 1, the number of small p-values (k) has a binomial dis-

tribution, and pi’s are observations from the uniform (0, 1) distribution, truncated

at τ (i.e. the distribution of pi’s is uniform on (0, τ)).

Given k, the conditional distribution of the product (W ) can be calculated

directly. Let X1, ..., Xk be independent uniform (0, τ) random variables. Consider

the transformation:

Z1 = X1

Z2 = X1X2

...

Zk = X1X2...Xk

So the inverse is

X1 = Z1

X2 = Z2/Z1

...

Xk = Zk/Zk−1

The Jacobian of the transformation (J) has the following structure:

∂xi/∂zj =



1 i = j = 1

1/zi−1 i = j ≥ 1

−zi/z
2
i−1 j = i− 1

0 otherwise

Therefore

| J |=
k−1∏

i

1/zi
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and the joint density is

f(Z) =
1

τk
∏k−1

i=1 zi

Integrating out z1 through zk−1 from the joint density gives the conditional prob-

ability, P (W ≤ w | k):

P (W ≤ w | k) =
∫ w

0

[∫ τk

t

∫ τk

zk−1

...
∫ τk

z2

∏k−1
i=1 dzi

τ k
∏k−1

i=1 zi

]
dt

=
∫ w

0

(log τ k − log t)k−1

(k − 1)! τ k
dt (4.4)

Then the unconditional distribution is found as follows:

P (W ≤ w) =
∫ w

0

L∑
k=1

(log τ k − log t)k−1

(k − 1)! τ k

× I(log τ k > log t)

(
L

k

)
τ k(1− τ)L−kdt (4.5)

The probability calculated in (4.5) corresponds to the combined p-value. After τ k

in (4.5) is cancelled, this probability is

P (W ≤ w) =
∫ w

0

L∑
k=1

(k log τ − log t)k−1

(k − 1)!

× I(τ k > t)

(
L

k

)
(1− τ)L−kdt (4.6)

or equivalently

P (W ≤ w) =
L∑

k=1

(
L

k

)
(1− τ)L−k

(k − 1)!

[∫ w

0
(k log τ − log t)k−1

× I(τ k > t)dt
]

(4.7)

Provided τ k > t, the integral in (4.7), which we denote by Ik is:

Ik =
∫ w

0
(log τ k − log t)k−1dt (4.8)

= (log τ k − log t)k−1t|w0
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−
∫ w

0
td[(log τ k − log t)k−1] (4.9)

= w(log τ k − log w)k−1

− (k − 1)
∫ w

0
t(−1

t
)(log τ k − log t)k−2dt (4.10)

= (k − 1)Ik−1 + wA(τ, k, w)k−1. (4.11)

where A(τ, k, w) = k log τ − log w. Since I1 = w, then

Ik = (k − 1)!

[
w + w

k−1∑
s=1

A(τ, k, w)s

s!

]
(4.12)

= w(k − 1)!
k−1∑
s=0

A(τ, k, w)s

s!
(4.13)

Therefore,

P (W ≤ w) = w
L∑

k=1

 L

k

 (1− τ)L−k

(k − 1)!
(k − 1)!

k−1∑
s=0

A(τ, k, w)s

s!
(4.14)

= w
L∑

k=1

 L

k

 (1− τ)L−k
k−1∑
s=0

A(τ, k, w)s

s!
(4.15)

= w
L∑

k=1

k−1∑
s=0

 L

k

 (1− τ)L−k A(τ, k, w)s

s!
(4.16)
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Table 1 Power levels when all L hypotheses are true.

L

Method 2 3 5 10 25 50

Trunc. Prod., τ = 0.05 0.046 0.045 0.050 0.051 0.050 0.049

Trunc. Prod., τ = 0.5 0.049 0.049 0.052 0.048 0.053 0.049
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Table 2 Power levels when hA of L = 25 hypotheses are false, and L− hA are

true.

hA

Method 1 2 3 4 5 6

Edgington 0.077 0.124 0.186 0.266 0.361 0.470

Fisher 0.119 0.229 0.321 0.502 0.678 0.793

Trunc. Prod., τ = 0.05 0.158 0.265 0.401 0.538 0.653 0.774

Stouffer 0.091 0.159 0.256 0.373 0.502 0.628

Wilkinson 0.075 0.137 0.234 0.355 0.482 0.604
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Table 3 Power levels when hA of L = 25 hypotheses are false in each

direction and L− 2hA are true.

hA

Method 1 3 5 7 9 11

Edgington 0.043 0.036 0.027 0.019 0.011 0.005

Fisher 0.093 0.235 0.423 0.617 0.771 0.879

Trunc. Prod., τ = 0.05 0.119 0.353 0.598 0.784 0.891 0.949

Stouffer 0.048 0.051 0.050 0.049 0.050 0.049

Wilkinson 0.066 0.199 0.413 0.638 0.797 0.900
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Table 4 p-values for likelihood ratio tests of Hardy-Weinberg equilibrium

among three pairs of populations at seven genetic loci.

Population

Locus Navajo Pueblo Sioux Fisher Trunc. Prod.

LDLR 0.377 0.397 0.599 0.566 0.142

GYPA 0.014 0.470 1.000 0.122 0.045

HBGG 0.136 0.168 0.790 0.235 0.142

D7S8 0.052 1.000 0.804 0.385 0.142

GC 0.259 0.124 0.213 0.125 0.142

HLA-DQA1 0.438 0.368 0.562 0.569 0.142

D1S80 0.750 0.559 0.211 0.563 0.142

Fisher 0.031 0.430 0.812 0.216

Trunc. Prod. 0.116 0.302 0.302 0.388
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Chapter 5

DETERMINING TRUE

EFFECTS IN GENE

EXPRESSION DATA
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5.1 Abstract

DNA microarrays provide the possibility to simultaneously monitor the expres-

sion levels of many genes. The most inclusive technique is currently available for

the yeast (Saccharomyces cerevisiae) genome, where expression of all genes can be

studied. The arrays of tens of thousands of genes are becoming common for mam-

malian genomes and both the number of genes and the sensitivity are continuing

to improve. One of the applications is to look for the changes in gene expression

in response to drug treatments, where treated and control samples are compared

for the abundance of mRNA, measured by the fluorescent intensity. Changes in

the intensities between samples could be attributed to the experimental error or to

the presence of a real effect of the treatment. To distinguish the true effects from

the noise, statistical tests should be carried out for all pairs of intensities. This

results in a large number of tests and the multiple testing problem becomes an is-

sue. In this paper we discuss two multiple testing procedures for localizing subsets

of true effects. These procedures are intermediate between individual adjustment

methods and methods based on combining p-values.

5.2 Introduction

This paper studies performance of two methods for dealing with the multiple test-

ing problems when the number of tests is very large. The usage of our methods is

illustrated by applying them to data from comparisons of gene expression changes

in Hepatocellular carcinoma cells, untreated and treated with a drug.
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Both methods are based on combining subsets of “small” p-values that are

outcomes of statistical tests for the difference in measured intensities. A test based

on the distribution of the ratio of two intensities has been proposed by Chen et al.

(1997), however it relies on the distributional assumptions that might not always

hold. For this study, we use p-values obtained with the method of Kepler et al.

(1999), who developed a robust semi-parametric normalization technique based on

the local regression smoothing.

Multiple testing methods divide into two extremes, the ones that make state-

ments about individual null hypotheses H1, ..., HL and ones that are concerned

with the global null hypothesis, ∩L
i Hi. The former are traditionally required that

they control the family-wise error (FWE). Westfall and Young (1993) argue that

it is also desirable that the FWE is controlled in the strong sense. Specifically,

for the significance level α, a multiple testing procedure controls the FWE in the

strong sense if FWE ≤ α for all subsets of hypotheses, regardless of which of

them are true. The distinction between the strong and the weak control is thus

only the issue in the situation of the “partial null hypothesis”, i.e. when some of

the hypotheses are false. A common method is the single-step Bonferroni tech-

nique. It rejects Hi if pi ≤ α/L. Several step-wise procedures have been proposed.

A method of Holm (1979) is an example of a step-down procedure. It is based on

the Bonferroni inequality and the min p statistic. A method of Hochberg (1988)

is a further improvement and a sequential adaptation of the Bonferroni technique.

Hochberg’s method is to order pi’s, start with i = L and once pj ≤ α/(L− j + 1),

then reject all Hi for i ≤ j.

Benjamini and Hochberg (1995) proposed a different approach, which is to
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maintain the “false discovery rate”, or the expected proportion of false rejections.

The Benjamini and Hochberg’s procedure (BH) is to order pi’s and if pj ≤ jα/L,

then reject all Hi for i ≤ j. This error rate is equivalent to the FWER when

all hypotheses are true. Clearly, the BH method controls the FWER in the weak

sense, however the gain in power to detect true effects can be substantial. The BH

method is most appropriate when the number of true effects is known to be large,

a moderate amount of the false positive results can be tolerated, or if a follow-up

study is anticipated (Weller et al., 1998, Drigalenko and Elston, 1998).

It should be stressed that the BH method does not provide information about

the proportion of false positive results for any particular experiment where some

of the hypotheses were in fact rejected. Benjamini and Hochberg (1995) stated

that “a desirable error rate to control may be the expected proportion of errors

among the rejected hypotheses, which we term the false discovery rate (FDR)” and

designed a method that controls the false discovery rate unconditionally, weighting

FDR by the probability of at least one rejection:

FDR = E
{

F

T + F
| T + F ≥ 1

}
Pr(T + F ≥ 1) (5.1)

where T, F are the numbers of true and false rejections. The BH method controls

this false discovery rate in an unconditional manner. Benjamini and Hochberg read-

ily acknowledge that their method cannot control FDR, conditional upon having

rejected one or more hypotheses. Not realizing this could lead to some confusion

(Zaykin et al., 1999a). It is easy to see that controlling E
{

F
T+F

| T + F ≥ 1
}

would

require knowledge of the unknown number of true null hypotheses and the power

of the test to detect true effects. Consider applying the BH method in the case
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when there is exactly one true effect among L hypotheses. The proportion of false

discoveries among rejected hypotheses will be at least 50% whenever any of the

p-values corresponding to false positives is smaller than the one corresponding to

the true effect. The frequency of that happening will depend on whether the distri-

bution of the p-value corresponding to the true effect is stochastically greater than

the distribution of the first order statistic from the uniform distribution. Because

this distribution is

p1:L ∼ Beta(1, L) (5.2)

it follows that FDR∗ will depend on both L and the power to detect the single true

effect. We showed by simulations that the expected proportion of false positive

results among the rejected hypotheses can increase rather dramatically (Zaykin et

al., 1999a). FDR control allows that false positives will occur, in fact they are

expected in any given study. However, given that a significance has been found,

the implied operational interpretation that (1 − α) 100 % of the claimed results

will replicate cannot be made, since a smaller percentage is expected to replicate

in reality. The problem is more pronounced as the total number of true null

hypotheses increases, and thus controlling FDR at a level α allows no clear-cut

interpretation.

The combination methods, such as of Fisher (1932), Stouffer et al. (1949) and

Edgington (1972) are testing the global null hypothesis, ∩L
i Hi. Once the hypothesis

is rejected, it is only possible to conclude that one or more Hi’s are false. This is

somewhat less so with the Fisher’s method, since it is disproportionally influenced

by the tests resulting in small p-values (Rice, 1990).
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In the next section we review and develop two methods based on distributions

of first order statistics that accentuate this property of the Fisher’s method by

considering a smaller subset of hypothesis ∩k
i Hi, 1 < k < L. Depending on the

value of k, these methods are closer to global methods or methods for individual

adjustments. As with the BH method, they control the FWER in the weak sense.

5.3 Methods based on distributions of first order

statistics.

5.3.1 Testing the overall hypothesis

When the proportion of true effects is small, both the type-I error rate and the

proportion of false positives within the class of rejected hypotheses can be quite

high. Then the only sensible conclusion that can be reached is that there are one or

more true effects among p-values that satisfy the FWER or FDR conditions. Here

we review and develop two methods that address the question of whether there is

overall evidence against the null hypothesis among the subset of either “small” or

“first k smallest” p-values.

The “truncated product method” (τ -method of Zaykin et al., 1999b) rejects the

null hypothesis that there are no true effects among the L tests. The alternative

hypothesis is that there is collective evidence that some of the effects are present

among the tests with “small” p-values. If the null hypothesis is rejected, the

conclusion is more vague than that of the individual adjustment techniques.

The τ -method makes use of the distribution of the product W of all those pi
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values that do not exceed some fixed value 0 < τ ≤ 1:

Wτ =
L∏

i=1

p
I(pi≤τ)
i (5.3)

Under the null hypothesis H0, the distribution of Wτ is

Pr(Wτ ≤ w) =
L∑

k=1

(
L

k

)
(1− τ)L−k

×
(
w

k−1∑
s=0

(k ln τ − ln w)s

s!
I(w ≤ τ k) + τ kI(w > τ k)

)
(5.4)

where I(·) is an indicator function. The combined p-value is thus calculated

from the equation (5.4).

When τ is set to 1, it becomes equivalent to the Fisher’s multiplicative method.

Note that instead of looking up the combined p-value from the tail of a chi-square

distribution, it can be calculated directly as

Pr(Wτ ≤ w) = w
L−1∑
s=0

(− ln w)s

s!
(5.5)

When the number of tests is large, it is necessary to resort to the following

Monte Carlo algorithm to avoid numerical overflows. The algorithm for estimating

(5.4) is as follows:

1 Decide on the value of the truncation point, τ .

2 Calculate W0 =
∏L

i p
I(pi≤τ)
i for a sample of pi’s (L observed p-values). Set C = 1,

R = 0.

2a Generate L independent uniform (0, 1) random numbers, u1, ..., uL.

2b Calculate WC =
∏L

i u
I(ui≤τ)
i .
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2c If WC ≤ W0, increment R by one. Increment C by one.

6 Repeat steps (2a)-(2c) B times.

7 The empirical combined p-value is R/B.

With this algorithm, it is possible to calculate combined p-values for very large

number of tests (logs of products might have to be taken). The empirical p-value

obtained with it converges to the one obtained with (5.4) as B increases.

The algorithm can be naturally extended for dealing with non-independent p-

values just by generating correlated uniforms at step 3. Denote U = (u1, ..., uL)′,

a vector of iid uniform(0,1) random variables and let C be the Cholesky factor

of the correlation matrix of pi’s. A vector of correlated uniform random variables

(U∗) is then obtained as

U∗ = 1− Φ
{
C Φ−1 (1−U)

}
(5.6)

where Φ is the standard normal CDF and Φ−1 is its inverse, applied to the elements

of the vector component-wise. In some situations an alternative way is to sample

from a stochastic process. For example, if tests are ordered in some natural way

and there is an exponential decay in the correlation, sampling from the Ornstein-

Uhlenbeck diffusion process can be used to impose the correlation. The stochastic

differential equation for the Ornstein-Uhlenbeck diffusion is

dX

dt
= −aX(t) + σξ̃(t), (5.7)

where ξ̃(t) is the white noise term and a, σ are the drift and the variance parame-

ters. The diffusion increments for some small ∆t can be generated as −aX(t)∆t+
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σZ
√

∆t, where Z ∼ N(0, 1). For this process, the autocorrelation function, the

mean and the variance are

r(X(t), X(s)) = X(0)e−a(t+s) +
σ2

2a

(
e−a(t−s) − e−a(t+s)

)
t→ σ2e−a(t−s)

2a
(5.8)

E(X(t)) = xe−at t→ 0 (5.9)

Var(X(t)) =
σ2

2a
(1− e−2at)

t→ σ2

2a
(5.10)

so, for example, setting X(0) ∼ N(0, 1), a = 2, σ2 = 4, sampling a vector {X(ti)}

from the process, i = 1, ..., L, and applying Φ−1(·) to each observation allows to

generate a set of U(0, 1) random variables with the auto-correlation function given

by e−2(t−s).

Here we introduce another method based on the product of k smallest p-values

(κ-method). The main difference between the τ and κ methods is that the number

of p-values over which the product is taken is a binomial random variable in the

τ -method, whereas this number is fixed (equal to k) in the second method.

Let V1:L, V2:L, ..., Vk:L be the first k order statistics in a sample of p-values. When

H0 is partially true, i.e. some of the tests represent true effects, the distribution

of the order statistics is obtained as follows. Let g define a subset of indices and

|g| be the length of that subset. Let Fi(x) be the distribution function for the p-

value of ith test. Then by summing over subsets of k or greater lengths, we obtain

the distribution of an individual kth order statistic in a sample of non-identically

distributed independent random variables:
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P (Vk:L ≤ x) =
L∑

j=k

∑
g,|g|=j

∏
i∈g

Fi(x)

∏
i6∈g

(1− Fi(x))


=

L∑
j=k

∑
g,|g|=j

L∏
i

(2Fi(x)− 1)I(i ∈ g) + 1− Fi(x)

=
L∑

j=k

∑
g,|g|=j

L∏
i

(1− 2Fi(x))I(i 6∈ g) + Fi(x) (5.11)

Under complete H0, individual p-values have the uniform(0,1) distribution and

the distribution of Vk:L is Beta(k, L− k + 1). Then the distribution of the product

of first k order statistics (k smallest p-values) is given by

P (Wk ≤ w |k) = 1−
(
L

k

)∫ 1

w
(1− x

1
k )L−k

×

1− w

x

k−2∑
s=0

(
log x

w

)s

s!

 dx (5.12)

(see Appendix 1 for the derivation). The first term corresponds to the distribution

of the kth power of a Beta random variable, Vk:L ∼
(

L
k

)
(1 − x)L−k kxk−1. Its

distribution is

(Vk:L)k ∼
(
L

k

)
(1− x

1
k )L−k (5.13)

and the rest of (5.12) is a convolution of smaller order statistics, Vj<k:L. The

probability in (5.12) defines the combined p-value of the κ-method.

An application of the closure principle of Marcus et al. (1976) shows that

individual adjustments with the strong FWER control, V ∗
i:L, are available as

V ∗
i:L = 1− (1− Vi:L)L−k+1 (5.14)
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which is a smaller number than the one that would be obtained with step-wise

procedures of Hochberg or Holm. This improvement is obtained at the cost that

k must be specified in advance.

As with the τ -method, we recommend to compute (5.12) through the following

Monte-Carlo algorithm when L is large:

1 Decide on k.

2 Calculate W0 =
∏k

i pi for a sorted sample of pi’s (L observed p-values). Set

C = 1, R = 0.

2a Generate L (possibly correlated) and sorted uniform (0, 1) random num-

bers, u1, ..., uL.

2b Calculate WC =
∏k

i ui.

2c If WC ≤ W0, increment R by one. Increment C by one.

6 Repeat steps (2a)–(2c) B times.

7 The empirical combined p-value is R/B.

More generally, one can specify individual weights for p-values (powers of pi’s).

If k = L, this reduces to the method of Good (1955), who gave the distribution

of
∏L

i pvi
i , for the case of all vi’s being different from each other. The Monte-Carlo

method removes this restriction. Weights can be derived based on the sample sizes

of individual tests. Good (1992) suggested that p-values can be standardized to a

case with 100 observations by multiplying each p-value by a
√

N/100.

An improvement in speed of the algorithm can be achieved if ui’s are stored in

an ordered manner. Such implementation does not need to keep all L generated
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p-values in the computer memory, but only k smallest ones. A C++ example of

such function is given in Appendix 2.

5.4 Determining true effects

Once the overall null hypothesis is rejected, it is important to determine which

effects are most likely to be the true ones. The BH method reviewed above pro-

vides the FDR control, but because of its unconditional nature the utility of the

method is limited to cases when the proportion of true effects is high as well as

the individual powers to detect them (Zaykin et al., 1999a). In situations when

only a very small proportion of null hypotheses is false, the BH method can still

be used in an exploratory manner. Here we suggest another powerful algorithm

for determining the subset of p-values that are likely to represent true effects.

The Wτ and Wk random variables defined above are the products of p-values.

It can happen that all p-values from the ordered subset p(1), ...p(j) are small enough

so that if Wτ = p(i≤j) or Wk = p(i≤j), the overall hypothesis is still rejected. It is

therefore possible to successfully divide the original product, W , by p(i)’s, starting

with p(1), effectively removing p-values from it. As long as the combined proba-

bility remains significant, the removed p-value is declared a true effect. We define

this as a step-up procedure, in consistency with the notation of Benjamini and

Hochberg (1995). The theoretical justification of this scheme follows from the clo-

sure principle. The described step-wise procedure arises as a closing method with

an early stop. Algebraic forms of the distributions used in τ and κ methods pro-

vide shortcuts so that not all 2L−1 intersection hypotheses need to be considered.
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Although it is possible to control the FWER in the strong sense with this method

(Zaykin et al., 1999b), here we are concerned with increasing the power, allowing

for the weak control of the error rate of individual hypotheses. Note that the

FWER for the remaining subset (considered as as a single intersection hypothesis)

is controlled strongly.

5.4.1 Results from simulations

We performed a series of simulations illustrating performance of the algorithm

for determining true effects and compared power, expected proportions of true

discoveries and the false discovery rate within the class of rejected hypothesis

proposed methods as well as the Hochberg’s and the BH methods. All tests were

performed at the 5% α-level and different total numbers of tests (L) and individual

power (β) were compared. All tests maintained the declared α-level under complete

null hypothesis (results not shown).

Tables 5.1-5.3 show results of simulations with 50,000 tests. Only the overall

hypothesis was tested by combination tests, with τ set to 0.002 and k set to

100. HA is the number of true effects in each simulation. All numbers in the

tables are averages over 1000 simulations. Table 5.1 shows expected proportion

of found true effects. Table 5.2 shows the power values, i.e. the average numbers

of times per simulation when one or more true effects were found. Table 5.3 is

the conditional false discovery rate. The overall tests make no attempt to adjust

p-values individually and the values of the conditional FDR are high. These can

be brought down by setting smaller values of τ and k. Note that both H and
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BH methods can have quite large proportion of false positives among rejected

hypotheses.

Tables 5.4-5.6 are results of simulations with smaller numbers of tests. They

show results for overall tests and the step-up algorithm (τ -method) and corre-

sponding results for the H and BH methods. The κ-method has not been included

due to its high computational demand, however we expect results to be similar

to those obtained for τ -method. Note that values of E {I(T > 0)} do not need

to be recomputed as the probability of rejecting one or more hypotheses remains

the same. The simulation results show that the proportion of false discoveries can

be largely reduced by using the step-up algorithm and the expected proportion of

found true effects remains high.

5.4.2 Application to microarray data

We applied our algorithms to p-values obtained from tests on mRNA expression

changes in Mesothelinoma cells after four hours exposition to a drug. The data were

averaged across two arrays. There were 3567 tests in total. We had a repetition of

the experiment, but performed with a single array.

We used τ = 0.001 and k = 50. Both tests reported an overall p-value less than

0.0001. The step-up algorithm with τ -method declared 22 out of 44 “small” p-

values as “true effects”. The κ method declared 18 out of 50 as true effects. Both,

H and BH methods declared only a single effect corresponding to the Abelson

murine leukemia gene as true (raw p-value 0.944310−10). This gene replicated with

p-value 0.001. Four other effects replicated with p-values less than 0.05, seven
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others gave p-values less than 0.1, and all p-values but one were smaller than

0.5. There was no repetition for one of the genes. Table 5.7 shows results of the

analysis. The Abelson murine leukemia gene is not included in the table. The

first two columns are unadjusted p-values corresponding to the two experiments.

The last column contain p-values combined across both experiments. They are

adjusted for both 3567 tests from the first experiment and for the 21 repetitions.

The adjusted p-value (pc) was calculated according to Zaykin and Young (1999c)

as

pc = 1− L

(
n

k

)∫ 1

w

{
(1− w)n+L−kwk−1 (5.15)

×
∫ 1

0

(1− x)n−kxL−1

[1− x(1− w)]n
dx

}
dw (5.16)

where n is the number of p-values that have been replicated, m = n−k +1, where

k is the rank of p-value from the replication, and W is the product of two p-values

from both experiments.

The overall significance for last two columns was obtained with Fisher’s com-

bined probability method, yielding very small p-values. Results in the table 5.7

indicate that data contained true effects that were missed by H and BH methods.

To explore this situation further, we conducted a series of simulations in the way

that has been described above. We set L = 3567 (the number of tests in the first

experiment). We used β = 0.40, 0.50, 0.80 and numbers of true effects varying from

15 to 100 (tables 5.8 – 5.10). The results show that the power for the individual

tests cannot be as high as 0.80. The false discovery rate is low for all methods. As

the τ -method reaches the expected number of true discoveries around 20, all three

methods attain very high power (5.9) and the expected number of true discoveries
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for H and BH methods is also high. In fact, when β = 0.80, HA = 25, the proba-

bility that the BH method finds 2 or less true effects is only 2% (data not shown).

The data is most consistent with the situation of the average power between 0.40

and 0.50 and the number of genes that responded to the treatment between 50 and

75. Indeed, BH and H methods reject about one test and the τ -method rejects

about 20 tests in such situation.

5.5 Conclusions

We suggest that “intermediate” combination methods have good potential in ex-

ploratory analysis. Using an expression array data set, we demonstrate how to

make inferences about the average numbers of true effects in the class of rejected

hypotheses. Combination methods perform well when used together with simula-

tions and methods of Hochberg (1988) and Benjamini and Hochberg (1995). We

showed that it is possible to infer the plausible number of false null hypotheses

from comparisons of numbers of rejected hypotheses made by individual adjust-

ments methods and by combination methods.
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5.6 Appendix 1

Let V1:L, V2:L, ..., Vk:L be first k order statistics from U(0, 1). We are looking for

the distribution of Wk = V1:LV2:L...Vk:L. Write Vi ≡ Vi:L and

Wk =
(

V1

V2

)(
V2

V3

)2

...
(

Vk−1

Vk

)k−1

V k
k (5.17)

≡ U1 U2
2 ... Uk−1

k−1 Vk (5.18)

U1 U2
2 ... Uk−1

k−1 Uk are independent and uniformly distributed on (0-1), since

Ui ∼ Beta(i, 1) (5.19)

and

U i
i ∼ Beta(1, 1). (5.20)

V k
k is a kth power of a Beta(k, L−k+1) random variable with the following density

V k
k ∼

(
L

k

)
(1− x

1
k )L−k (5.21)

Then

P (Wk ≤ w) = 1−
∫ 1

w

(
L

k

)
(1− x

1
k )L−k

×
∫ 1

w

∫ 1

w
x2

∫ 1

w
x2x3

...
∫ 1

w
x2...xk−1

dx1...dxk (5.22)

= 1−
(
L

k

)∫ 1

w
(1− x

1
k )L−k

×

1− w

x

k−2∑
s=0

(
log x

w

)s

s!

 dx (5.23)
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5.7 Appendix 2

A C++ function for the Monte-Carlo computation of the weighted κ-method. User

needs to supply a uniform (0,1) random numbers generator, random u01(). The

ln W0 parameter is
∑k

i vi ln pi calculated for the original set of p-values. Other

parameters are as in the text.

#include <set>

#include <vector>

#include <math.h>

double random_u01();

double k_method (double ln_W0, size_t L, size_t k,

size_t B, const vector<double>& v) {

struct Smallest {

multiset<double, greater<double> > l;

size_t lsz;

Smallest(size_t lsz_) : lsz(lsz_) {}

void Update(double p) {

l.insert(p); if(l.size()>lsz) l.erase(l.begin());

}

};

size_t R=0, i;

for(size_t j=0; j<B; j++) {

Smallest s(k);

for(i=0; i<L; i++) s.Update(random_u01());

double ln_WC=0;

multiset<double, greater<double> >::iterator C=s.l.begin();

for(i=0; C!=s.l.end(); C++,i++) ln_WC+=v[i]*log(*C);

if(ln_WC<=ln_W0) ++R;

}

return double(R)/B;

}
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Table 5.1: E(T ); (L = 50, 000, β = 0.80)

HA κ (overall) τ (overall) H BH

15 1.419 1.267 0.227 0.244

25 4.214 4.052 0.294 0.362

50 13.466 10.310 0.641 0.892

100 30.682 34.162 1.074 2.250

200 53.391 70.270 2.324 7.419

Table 5.2: E {I(T > 0)}; (L = 50, 000, β = 0.80)

HA κ (overall) τ (overall) H BH

15 0.244 0.227 0.190 0.195

25 0.460 0.457 0.245 0.258

50 0.816 0.794 0.466 0.492

100 0.993 0.980 0.675 0.750

200 1.000 1.000 0.891 0.950

Table 5.3: E(FDR | T + F > 0); (L = 50, 000, β = 0.80)

HA κ (overall) τ (overall) H BH

15 0.942 0.954 0.214 0.231

25 0.910 0.920 0.174 0.175

50 0.835 0.854 0.059 0.073

100 0.691 0.742 0.041 0.064

200 0.466 0.587 0.007 0.063
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Table 5.4: E(T )

β L HA τ (step-down/overall) H BH

0.50 100 5 0.483/1.048 0.246 0.300

0.50 100 15 3.529/7.163 0.747 1.214

0.50 1000 5 0.076/0.309 0.063 0.068

0.50 1000 15 0.598/2.610 0.188 0.227

0.50 1000 25 1.837/8.232 0.314 0.422

0.50 1000 50 7.529/24.507 0.609 1.041

0.80 1000 5 0.348/0.886 0.406 0.485

0.80 1000 15 3.310/9.541 1.201 1.940

0.80 1000 25 8.150/19.851 1.989 4.011

0.80 1000 50 22.54/39.937 4.020 11.565

Table 5.5: E {I(T > 0)}
β L HA τ (step-down) H BH

0.50 100 5 0.293 0.223 0.237

0.50 100 15 0.916 0.534 0.576

0.50 1000 5 0.058 0.063 0.067

0.50 1000 15 0.289 0.172 0.227

0.50 1000 25 0.607 0.314 0.422

0.50 1000 50 0.978 0.461 0.511

0.80 1000 5 0.192 0.347 0.362

0.80 1000 15 0.788 0.712 0.750

0.80 1000 25 0.991 0.876 0.912

0.80 1000 50 0.999 0.996 0.984
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Table 5.6: E(FDR | T + F > 0)

β L HA τ (step-down/overall) H BH

0.50 100 5 0.437/0.674 0.155 0.173

0.50 100 15 0.187/0.357 0.050 0.068

0.50 1000 5 0.797/0.955 0.444 0.454

0.50 1000 15 0.546/0.873 0.202 0.221

0.50 1000 25 0.420/0.799 0.143 0.158

0.50 1000 50 0.322/0.653 0.075 0.089

0.80 1000 5 0.488/0.932 0.100 0.124

0.80 1000 15 0.168/0.807 0.038 0.065

0.80 1000 25 0.164/0.707 0.023 0.053

0.80 1000 50 0.162/0.540 0.044 0.047
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Table 5.7: Confirmatory analysis

p-values

Gene 1-st experiment repetition overall (adjusted)

V-abl Abelson murine leukemia 0.46 10−05 0.032 0.005

Human CDK inhibitor p19INK4d 0.34 10−04 0.044 0.031

Murine leukemia viral (bmi-1) 0.34 10−04 0.051 0.029

Tetranectin 0.46 10−04 0.081 0.024

Tyrosin E-protein kinase ITK/T 0.60 10−04 0.128 0.044

Human cytochrome bc-1 complex 0.65 10−04 0.075 0.037

Integrin, beta 8 0.87 10−04 N/A

Human placenta (Diff33) mRNA 0.11 10−03 0.022 0.089

Homo sapiens Su(var)3-9 homol 0.17 10−03 0.054 0.119

Spleen focus forming virus 0.21 10−03 0.098 0.134

Homo sapiens pyruvate dhg 0.24 10−03 0.615 0.436

Homo sapiens RaP2 0.27 10−03 0.220 0.244

Human putative endothelin rec 0.28 10−03 0.185 0.238

Myosin light chain (alkali) 0.31 10−03 0.212 0.284

Laminin, gamma 1 0.40 10−03 0.266 0.359

Human phosphatidylinositol 0.41 10−03 0.055 0.230

Human prepromultimerin mRNA 0.44 10−03 0.077 0.236

H.sapiens hPTPA mRNA 0.44 10−03 0.073 0.264

Human protein kinase (zpk) 0.44 10−03 0.134 0.285

CD83 antigen precursor 0.50 10−03 0.017 0.400

Interferon (gamma) 0.56 10−03 0.486 0.667

Lysyl oxidase 0.57 10−03 0.240 0.445

Fisher’s combined p-value

2.84 10−06 9.71 10−05
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Table 5.8: E(T ), 3567 tests

β HA τ (step-down) H BH

0.40 50 12.376 0.753 1.055

0.40 75 21.517 1.147 1.945

0.40 100 31.009 1.494 2.843

0.50 15 2.111 0.423 0.494

0.50 25 6.183 0.713 0.940

0.50 50 17.501 1.404 2.348

0.50 75 29.258 2.158 4.189

0.80 15 6.381 2.187 3.182

0.80 25 13.782 3.648 6.264

0.80 50 32.839 7.153 15.496

Table 5.9: E {I(T > 0)}, 3567 tests

β HA τ (step-down) H BH

0.40 50 0.999 0.538 0.558

0.40 75 1.000 0.701 0.730

0.40 100 1.000 0.787 0.812

0.50 15 0.777 0.355 0.360

0.50 25 0.988 0.508 0.527

0.50 50 1.000 0.762 0.790

0.50 75 1.000 0.921 0.911

0.80 15 0.999 0.895 0.907

0.80 25 1.000 0.982 0.991

0.80 50 1.000 1.000 1.000
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Table 5.10: E(FDR | T + F > 0), 3567 tests

β HA τ (step-down) H BH

0.40 50 0.058 0.001 0.001

0.40 75 0.055 0.001 0.001

0.40 100 0.047 0.000 0.001

0.50 15 0.048 0.003 0.004

0.50 25 0.052 0.001 0.001

0.50 50 0.050 0.001 0.001

0.50 75 0.050 0.001 0.001

0.80 15 0.019 0.001 0.002

0.80 25 0.022 0.001 0.001

0.80 50 0.023 0.001 0.001
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Chapter 6

P -VALUE ADJUSTMENTS IN

CONFIRMATORY STUDIES
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6.1 Background

Consider the following situation. In a marker/disease association study a whole

genome scan has been performed. One or more smallest p-values have been

recorded. Suppose there are other studies that could be used for confirming the

results. When there is only one pair of p-values, one resulting from a study, and

another from the replication, both can be combined with Fisher’s method (Fisher,

1935). Multiple p-values from two studies, however, cannot be simply combined

with the Fisher’s procedure. An obvious possibility is to combine each pair first,

and then adjust by the total number of pairs, L Here we describe a better method

that allows to include one or more smallest p-values from the first study into the

combination test.

6.2 Derivation of the method

First, let X1 be the smallest p-value from the first study involving L tests and

X2 be the p-value obtained from the confirmatory study, testing the same null

hypothesis. Such situation is relevant, in particular, for the validation of nodes of

recursive partitioning trees, where tests are ordered by p-values and the smallest

p-value is used for determining a “descriptor” for splitting (e.g. Hawkins, D. M.

and Kass, 1982).

Under H0, X1 ∼ Beta(1, L) and X2 has the uniform(0,1) distribution.

Consider a random variable W = X1X2. Its density is
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fW (w) =
∫ 1

x1x2

1

t
L(1− t)L−1dt (6.1)

which can be expressed in a semi-closed form. Let

Ψ(i, L) =
(−1)i+1∏i

j=0(L− j)

i2(i− 1)!
. (6.2)

Ψ(i, L) is the result of the repeated indefinite integration by parts of the equa-

tion (6.1).

Then the density of W is

fW (w) = (6.3)(
−L log w +

L∑
i=1

Ψ(i, L)wi

)
−
(
−L log 1 +

L∑
i=1

Ψ(i, L)1i

)

= −L log w +
L∑

i=1

Ψ(i, L)wi −
L∑

i=1

Ψ(i, L) (6.4)

=
L∑

i=1

{
(wi − 1)Ψ(i, L)− log w

}
(6.5)

The combined p-value is therefore

pc = 1−
∫ 1

w

L∑
i=1

{
(ti − 1)Ψ(i, L)− log t

}
dt (6.6)

= 1−
∫ 1

w

L∑
i=1

{
(ti − 1)

(−1)i+1∏i
j=0(L− j)

i2(i− 1)!
− log t

}
dt (6.7)

This distribution function is most easily evaluated through the Monte-Carlo

simulation. For an observed value of the product of two p-values, w0, the empirical

p-value is obtained as the proportion of times when wi ≤ w0, where wi is a product

of Beta(1, L) and U(0, 1) random numbers.
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The above might be generalized to the case when there are several smallest

p-values. For this, we will need the distribution function of the product of two

Beta random variables.

Define the random variables X1 ∼ Beta(b, g) and X2 ∼ Beta(k,m). After mak-

ing a transformation W = X1X2, V = X2, substituting x = 1−v
1−w

and integrating,

the pdf of W = X1X2 is found as

fW (w|k,m, b, g) =
Γ(g + b)Γ(m + k)

Γ(m)Γ(k)Γ(g)Γ(b)
(6.8)

× (1− w)m+g−1wk−1
∫ 1

0

(1− x)m−1xg−1

[1− x(1− w)]m+k−b dx

Note that the closed form of the integral is not available in general. In a

particular case when m + k − b = 0, the integral is over support of the non-

normalized Beta density. In such situations the product is itself a Beta(g+m, k)

random variable.

Define τ being the number of p-values that passed to the second stage. Then

m = τ − k + 1, where k is the rank of p-value at the the second stage, g = L and

b = 1. fW (w) is therefore

fW (w) =
Lτ !

(τ − k)!k!
(1− w)τ+L−kwk−1

∫ 1

0

(1− x)τ−kxL−1

[1− x(1− w)]τ
dx

The combined p-value is

pc = 1−
∫ 1

w
fW (t)dt (6.9)
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It is easy to compute the Monte Carlo equivalent for the CDF of the product.

If the product of two Beta random variables is W , and rBeta(x,y) is a Beta(x,

y) random numbers generator, then the pseudo-code for obtaining the cumulative

probability (“combined p-value”) is

CNT = 0;

Do N times:

if [rBeta(b, n)*rBeta(k, m) <= W] then CNT = CNT+1;

done;

PVALUE = CNT / N;

A valid and simpler way to correct for multiple tests performed during the

first study is to combine all p-values across studies where replicates are available

with Fisher’s procedure, and then adjust each combined p-value by L. Since we are

interested in only one pair of tests, the combined p-value (pn) for the product, w,

is

pn = L
(
1−

∫ 1

w

∫ 1

v

1

t
dt dv

)
(6.10)

= Lw(1− log w) (6.11)

It can be shown that p-value calculated with (6.11) is always greater than

or equal to the probability obtained with (6.7). In fact, the difference between

the two probabilities, δ = pn − pc, is bounded by L: 0 ≤ δ ≤ L. The following

table shows the difference as a function of w for for the first four values, L = 1, ..., 4
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L δ = pn − pc

1 0

2 2w − w2

3 9w−6w2+w3

2

4 22w−18w2+6w3−w4

3

The difference between probabilities increases with w and L. suggesting that

pc is a correct although conservative probability for any “significant” p-value, and

not necessarily the smallest.

Consider an improved version of pn, based on Šidák’s correction:

pš = 1− (1− w(1− log w))L (6.12)

First four differences are again listed below. As before, they are always posi-

tive, but with the maximum at intermediate values of w.

L δ = pn − pš

1 0

2 w (2− 2w − w (log w − 2) log w)

3 1 + w(3+(w−6)w+6 log w)
2

− (1− w + w log w)3

4 1− w(w(18+(w−6)w)−12 log w−10)
3

− (1− w + w log w)4

6.3 Results and discussion

p-values under HA have been generated for the case of testing the difference be-

tween two normal means as described in Zaykin et al. (1999), with the individual

power of each test being equal to 80%. If u is a random number from U(0, 1), then
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an observation from the distribution under HA can be obtained as

p = 1− Φ
(
Φ−1(1− u) + γ

)
(6.13)

with

γ =
(µ1 − µ0)

√
n

σ
(6.14)

Therefore, splitting the sample size in half (with other conditions held equal) is

equivalent to dividing γ by
√

2. This allows to generate p-values as if all “pooled”

data from both experiments were available.

We recorded standard type-1 error rate (realized α-level when all tests are

performed under H0), statistical power, and the expected number of rejections.

This has been done both under complete H0 and under “partial HA”, when some

of the tests have been generated under HA and the remaining tests have been

generated under H0. The α-level was 5% and the number of simulations was

10,000.

Note that under H0, the expected number of rejections might not necessarily

be equal to the α-level. As an example, consider the case of Bonferroni (α1 = α/L)

and Šidák (α2 = 1 − (1 − α)1/L) corrections. With L tests, the expected number

of rejections with Bonferroni correction is equal to the α level: Lα1 = α. Since

α2 > α1 when L > 1, it follows that the expected number of rejections for the

Šidák method is always greater than the α-level. With an exaggerated example

of α = 0.5 and L = 100, the expected number of rejections for the Šidák method

becomes 0.69 (almost 20% increase).
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As it has been shown above, when only the experiment with the smallest p-

value is replicated, combining two studies and multiplying the result by L is not an

optimal procedure. At the another extreme, when all experiments are replicated,

(6.11) or (6.12) adjustments are equivalent to dividing the whole sample from both

replicates into two parts, performing tests on both and then combining resulting

p-values. Bauer and Kohne (1994) suggested that the power of this procedure is

almost equivalent to that of the test performed on the pooled sample. That is,

the loss of power following artificial partitioning of the total sample is quite small.

Our simulations confirm this observation (data not shown). Therefore, we expect

that p-value adjustments calculated with (6.9) should be optimal when only part

of experiments is replicated. We considered situations when the most significant

result is replicated, or all experiments with p-values smaller than α are replicated.

We confirmed that both methods maintain correct type-I error rate (tables 6.1,

6.2). In particular, table 6.2 shows that the method has the right rejection level

even when all, and not only small tests have been replicated.

For non-H0 situation (tables 6.3, 6.4), the results indicate that when the pro-

portion of tests from HA is 1/50 or higher, or when only the experiment with

the smallest p-value is replicated, pc method provides higher expected number of

rejected non-true null hypotheses.
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Table 6.1: Power and expected number of rejections under H0

Test Replication condition L E(rej) Type-I error

pn Smallest p 100 0.0284 0.0284

pc Smallest p 100 0.0522 0.0522

pn p ≤ α 100 0.0367 0.0362

pc p ≤ α 100 0.0445 0.0433

pn Smallest p 1000 0.0248 0.0248

pc Smallest p 1000 0.0476 0.0476

pn p ≤ α 1000 0.0385 0.0371

pc p ≤ α 1000 0.0472 0.0476

Table 6.2: Power and expected number of rejections under H0 when all p-values

from the first stage are included

Test L E(rej) Type-I error

pn 10 0.0510 0.0495

pc 10 0.0525 0.0502

pn 100 0.0524 0.0514

pc 100 0.0538 0.0530

pn 1000 0.0523 0.0508

pc 1000 0.0528 0.0515
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Table 6.3: Power and expected number of correct rejections under partial HA with

1/10 tests from HA

Test Replication condition L E(rej) power

pn Smallest p 100 0.9552 0.9552

pc Smallest p 100 0.9686 0.9686

pn p ≤ α 100 5.1913 0.9993

pc p ≤ α 100 6.2254 0.9995

pn Smallest p 1000 0.9970 0.9970

pc Smallest p 1000 0.9978 0.9978

pn p ≤ α 1000 31.1573 1

pc p ≤ α 1000 40.8573 1

pn Smallest p 10000 0.9997 0.9997

pc Smallest p 10000 0.9997 0.9997

pn p ≤ α 10000 158.9855 1

pc p ≤ α 10000 206.8952 1
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Table 6.4: Power and expected number of correct rejections under partial HA with

10 tests from HA

Test Replication condition L E(rej) power

pn Smallest p 100 0.9521 0.9521

pc Smallest p 100 0.9671 0.9671

pn p ≤ α 100 5.1913 0.9993

pc p ≤ α 100 6.2254 0.9995

pn Smallest p 500 0.8391 0.8391

pc Smallest p 500 0.8847 0.8847

pn p ≤ α 500 3.6973 0.9892

pc p ≤ α 500 3.7217 0.9787
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Chapter 7

BAYESIAN TESTS FOR

HETEROZYGOTE EXCESS

AND DEFICIENCY
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7.1 Abstract

We propose a multiallelic Bayesian test for the excess or the deficit of heterozygotes

(HDE) and compare its performance with exact frequentist procedures. Based on

the coalescent process simulations of samples from admixed populations we found

that our Bayesian test has desirable frequentist properties. It compares well with

exact tests proposed previously and provides additional benefits of Bayesian inter-

pretations and entire plots of posterior distribution of coefficients measuring HDE.

The method is computationally much faster in comparison with the frequentist

exact tests.
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7.2 Preliminaries

Shoemaker et al (1998) discussed a Bayesian approach for characterization of the

HWD for the case of two alleles. With two alleles, there is a single disequilibrium

parameter and there is no distinction between the testing for Hardy-Weinberg

disequilibrium (HWD) or the heterozygote deficiency/excess (HDE). Extension to

multiple alleles is most straightforward for the testing of the overall HDE. Such

extension allowed us to construct a test with good frequentist properties. Although

we find the Bayesian approach appealing by itself, in this article we concentrate on

how our test behaves as if it were a classical test in comparison with the previously

suggested methods.

Rousset and Raymond (1995) provided a thorough comparison of several clas-

sical exact procedures for the HDE. The tests are termed “exact” for their con-

ditioning on the observed allele numbers, which allows to eliminate the unknown

population allele frequencies (nuisance parameters) from the test statistic. The

Bayesian approach deals with the nuisance parameters by integrating them out;

conditioning on all the data, not just the marginal counts. It is often the case

that the Bayesian approach results in the point and the interval procedures with

excellent frequentist properties in both simple and complicated modeling scenarios

(Carlin and Louis, 1996). Rousset and Raymond (1995) found that the exact tests

based either on the number of heterozygotes in permuted samples (Nhet) or their

score test (U =
∑

nii/p̂i, where p̂i’s are the observed allele frequencies) have the

optimal performance in most situations. We used U , Nhet, and some other tests

defined below as the basis for comparison with the Bayesian tests.
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We require that the HDE measure is zero when there is no excess/deficit of

heterozygotes and that it is negative or positive otherwise. Suppose we calculate

the following posterior probability

τ = Pr(heterozygote excess > 0) (7.1)

Then

p = 2τ I(τ <
1

2
) + 2(1− τ) I(τ ≥ 1

2
) (7.2)

(where I() is the indicator function) can serve as a Bayesian surrogate for “two-

tailed” p-value, provided that τ has the Uniform(0,1) distribution under H0 (Ap-

pendix A). In practice, τ in (7.1) is estimated by sampling N times from the pos-

terior distribution and counting the number of times (y) when the heterozygote

excess was greater than zero in the posterior samples. Note that y is the binomial

random variable, Bin(N , τ). The prior on τ might be given by the Uniform(0,1)

distribution. Then the posterior Bayesian p-value is calculated from (7.2) using

τ̂ =
y + 1

N + 2
(7.3)

which is the posterior expectation for τ . This has the advantage over reporting

the sample proportion, τ̂MLE = y/N in that the value of τ is never exactly zero.

7.3 Method

We consider the Dirichlet-multinomial model for our analysis. The multinomial

likelihood of the data is

Pr({nij} |{Pij}) =
n!∏
nij!

∏
P

nij

ij (7.4)
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where nij is the observed genotype counts of the type ij, n =
∑

nij and Pij are

the population genotype frequencies.

The prior distribution for the genotype frequencies is the Dirichlet(γ11, γ12, ..., γkk),

where k is the number of alleles:

π(P) =
γ.∏

i≤j γij

∏
i≤j

P
γij−1
ij (7.5)

Then the posterior distribution is the Dirichlet(n11 + γ11, n12 + γ12, ..., nkk + γkk).

We define folowing measures of HDE for the Bayesian tests.

The total disequilibrium coefficient is defined as

D =
∑
i<j

Dij = 2
∑

i

Dii (7.6)

which could be scaled by its maximum value

Ψ =
∑

Ψij, (7.7)

Ψij =



pipj, Dij ≥ 0 and i 6= j

−min [pi(pj − 1), pj(pi − 1)] , Dij < 0 and i 6= j

pi(1− pi), Dij ≥ 0 and i = j

−p2
i , Dij < 0 and i = j

(7.8)

Dij = pipj −
1

2
Pij (7.9)

Dii = Pij − p2
i (7.10)

where pi is a frequency of the i-th allele. The scaled weighted disequilibrium

coefficient is

Ds =
1

Θ

∑
i<j

Dij√
pipj

(7.11)
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where

Θ =
∑
i6=j

Θij, (7.12)

Θij =


√

pipj, Dij ≥ 0

−min
[√

pi

pj
(pj − 1),

√
pj

pi
(pi − 1)

]
, Dij < 0

(7.13)

The coefficients Ψij and Θij are the bounds for the corresponding disequilibrium

coefficients and are derived from the constraints imposed by allele frequencies on

the genotype frequencies (Weir, 1996).

The third measure (δ = −1 +
√

PAA +
√

Paa) was discussed in Ghosh and

Weir (in preparation) as a measure of the departure from HWE in the case of two

alleles. In the multiallelic case δ is a measure of homozygote excess or deficiency

(Appendix D) and is defined as

δ = −1 +
∑√

P ii (7.14)

δ varies between -1 and 1 is somewhat analogous to the U statistic.

In a single-parameter case (the beta-binomial model) the parameters of the

prior distribution (γij-s here) are not likely to affect the posterior conclusions,

because the change in the prior parameters from 0 to 1 amounts to adding at most

a single observation to the data (Gelman et al 1995). This is not the case with

our multivariate model. We have found that the uniform prior on the genotype

frequencies grossly overestimates the probability that the null hypothesis is false

(Fig 1). This happens because the quantities of interest (measures of HDE) are the

transformations of the original parameters. The square root of the determinant of

the Fisher information matrix was suggested by Jeffreys (1961) as the prior that
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is invariant to the form of the parameterization. The Jeffreys prior distribution

(symmetric Dirichlet with all parameters equal to 1/2) is derived in Appendix

B. We also considered another symmetric prior, Dir(1/3). Appendix C gives the

contingency tables testing argument in favor of this prior.

Our simulations show that when the H0 is true, the Jeffreys prior generates

the uniform (0,1) distribution of p-values for δ. We obtained better results for D

using the Dir(1/3) prior.

7.4 Results and discussion

We studied and compared frequentist performance of coefficients Ds and δ with

measures U , F , and H, considered in Rousset and Raymond (1995). The measures

are defined as follows. Since significance were determined by shuffling, only variable

parts of statistics are considered.

U -statistic is defined as

U ∝
∑
i=1

nii

p̂i

(7.15)

“Exact test”

F ∝ Nh ln 2−
∑
i≤j

ln (nij!) (7.16)

Observed number of heterozygotes

H ∝ Nh (7.17)
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We also studied a “frequentist” version of the δ coefficient, defined as

“frequentist” δ

δf ∝
∑
i=1

√
nii (7.18)

Samples of 100 genotypes scored at four loci were generated by the coalescent

process (Hudson, 1990) with the consequent admixture. Ten populations were

allowed to drift until the prescribed amount of divergence, as measured by the

coancestry coefficient (Weir, 1996). Values of θ varied from 0.0 to 0.3, tables 7.1,

7.2.

Simulations under H0 shows that proportions of rejections, determined in 10,000

simulations are satisfactory for all tests, indicating that the posterior probabilities

can indeed be treated as frequentist p-values, when the Dir(1/2) and Dir(1/3)

priors were used.

Under HA, Bayesian tests show good power, which is increasing with the num-

ber of alleles. It should be noted that while we restricted attention to the prior

parameters, fixed for each coefficient, we were able to find that the method based

on the coefficient Ds can always outperform frequentist tests if the prior param-

eters are set to values higher than 1/2 for smaller number of alleles, while still

keeping the type-I error on the declared level. In addition, samples from entire

posterior distribution of Ds and δ are most easily produced, providing means for

the Bayesian interval inference.

A future extension of this work will include investigation of non-informative

classes of conjugate priors with less restrictive covariance structure than that of

the Dirichlet distribution (e.g. Rayens and Srinivasan, 1994, also Wong, 1998).
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7.5 Appendix A

Let τ be a uniform random variable, τ ∼ U(0, 1)

p = 2τ I(τ ≤ 1

2
) + 2(1− τ) I(τ >

1

2
) (7.19)

The moment generating function of p is

mp(t) = E{exp(tp)}

=
∫ 1

0
exp(2τI(τ <

1

2
)t) exp(2(1− τ)I(τ ≥ 1

2
)t)dτ

=
∫ 1/2

0
exp(2τt)dτ +

∫ 1

1/2
exp(2(1− τ)t)dτ

=
e1t − e0t

(1− 0)t
(7.20)

so that p in (7.19) has a Uniform(0, 1) distribution.

7.6 Appendix B

Finding the Jeffreys prior

The Jeffreys prior is defined as the square root of the determinant of the Fisher

information matrix: π(P) = |I(P)|1/2. Let Pi denote m = k(k + 1)/2 multinomial

genotypes. The log-likelihood is

ln f(n|P) ∝ nm ln(1−
m∑

Pi) +
m∑

ni ln Pi (7.21)
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The elements of the Fisher information matrix are

−E

(
∂2

∂Pi∂Pj

ln f(n|P)

)
(7.22)

=


n
Pi

+ n
1−
∑

v 6=m
Pv

, i = j

n
1−
∑

v 6=m
Pv

, i 6= j

(7.23)

where n =
∑

ni.

This matrix is of the form


a1 + x x x ...

x a2 + x x ...

x x a3 + x ...

... ... ... ...

 (7.24)

with the determinant

det =
∏

ai +
m∑
i

∏
j 6=i

aix (7.25)

so that

1

n
|I(P)| =

∏ 1

Pi

+
m∑
i

∏
j 6=i

1

Pi

(
1−∑

v 6=m Pv

) (7.26)

=
1∏

Pi (1−
∑

Pj)
(7.27)

and

|I(P)|1/2 ∝
∏

P
− 1

2
i

(
1−

∑
Pj

)− 1
2 (7.28)
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Therefore, the Jeffreys prior is the conjugate Dir(1/2) distribution.

7.7 Appendix C

We have found that under HWE the median of the posterior distribution of Ds

is at zero with the symmetric Dir(1/3) prior. A similar result holds for a simpler

case of testing the heterogeneity between rows in a 2×2 contingency table. Let the

table be

 n1 n2

n3 n4

 (7.29)

Let π1 be the population frequency of the first binomial sample (first row) and

π2 be the population frequency of the second binomial sample. The exact Bayesian

test calculates the posterior probability that π1 < π2 as

P (π1 < π2) =
∫ 1

0

∫ 1

t
B(n1 + γ, n1 + γ)sn1+γ−1(1− s)n2+γ−1

×B(n3 + γ, n4 + γ)tn3+γ−1(1− t)n4+γ−1dtds (7.30)

where γ is the common prior parameter of the Beta distribution. Now, suppose

that entries in the second row are precise multiples of the first,

 a b

xa xb

 (7.31)

For the test to be valid in the classical sense, we require that the prior parameter

for the beta distribution satisfies

127



1

2
= P (π1 < π2) =

∫ 1

0

∫ 1

t
B(a + γ, b + γ)sa+γ−1(1− s)b+γ−1

×B(xa + γ, xb + γ)txa+γ−1(1− t)xb+γ−1dtds (7.32)

This can be solved numerically for γ showing that γ needs to be 1/3.

7.8 Appendix D

The δ coefficient with multiple alleles

Consider a genetic locus with k alleles. Let δ be defined as

δ = −1 +
k∑

i=1

√
P ii (7.33)

When δ = 0 and HWE holds,

1 =
k∑

i=1

√
P ii (7.34)

1 =

(
k∑

i=1

√
P ii

)2

(7.35)

1 =
k∑

i=1

p2
i + 2

k∑
i<j

pipj (7.36)

When HWE does not hold,

(
k∑

i=1

√
P ii

)2

(7.37)
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=

(
k∑

i=1

√
p2

i + Dii

)2

(7.38)

=
k∑

i=1

p2
i +

k∑
i=1

Dii + 2
k∑

i<j

√
(p2

i + Dii)(p2
j + Djj) (7.39)

Which can also be written in a form involving disequilibrium coefficients for

heterozygotes:

k∑
i=1

p2
i + 2

k∑
i<j

Dij + 2
k∑

i<j

√√√√√(p2
i +

k∑
u 6=i

Diu)(p2
j +

k∑
v 6=j

Djv) (7.40)

The last equation illustrates that δ measures the excess or the deficit of het-

erozygosity, rather than the departure from HWE. In other words, δ can be zero

when HWE does not hold (this applies when k > 2).

The δ coefficient is an appealing measure for the Bayesian posterior inference,

because it is directly calculated from posterior samples of genotypes and its range

[-1 to 1] is independent of k.
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Table 7.1: Proportions of rejections under H0 with declared 5% α-level

Type-I error, H0

# alleles Ds δ F H U δf

2 0.053 0.052 0.042 0.042 0.051 0.056

3 0.056 0.052 0.048 0.044 0.050 0.051

4 0.056 0.057 0.047 0.048 0.051 0.050

5 0.058 0.067 0.048 0.050 0.052 0.053

6 0.051 0.071 0.053 0.045 0.048 0.048

10 0.039 0.063 0.051 0.048 0.049 0.048

15 0.035 0.010 0.050 0.045 0.046 0.037

20 0.047 0.010 0.043 0.034 0.043 0.034

Table 7.2: Proportions of rejections under HA on the level of 5%

Power, HA(θ = 0.3− 0.1)

# alleles Ds δ F H U δf

2 0.719 0.722 0.714 0.692 0.741 0.785

3 0.801 0.786 0.763 0.804 0.812 0.811

4 0.787 0.742 0.701 0.790 0.795 0.789

5 0.672 0.586 0.539 0.681 0.681 0.667

6 0.456 0.329 0.311 0.460 0.465 0.443

7 0.519 0.362 0.357 0.521 0.517 0.483

10 0.663 0.413 0.484 0.642 0.622 0.581

15 0.811 0.508 0.673 0.770 0.731 0.724

20 0.892 0.565 0.792 0.832 0.780 0.808
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Chapter 8

SUMMARY
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We investigated frequentist and Bayesian statistical methods for studying ge-

netic associations. Exact conditional methods for testing associations between

genes, Bayesian tests for the heterozygote excess and deficiency based on tail prob-

abilities of the posterior distribution, and computationally efficient algorithms have

been described in detail.

Great improvement in computational speed has been achieved for the exact con-

ditional tests through storing permuted multilocus genotypes in a tree-like struc-

ture. We showed that traditional test statistics, such as chi-square, can also be

used with this algorithm, since they can be expressed as a sum extending across

non-zero entries of contingency tables or sets of multilocus genotypes. We studied

these exact methods in the closing procedure framework, with regard to testing for

Hardy-Weinberg equilibrium. The procedure provides a global test for association

over all loci as well as individual p-values adjusted for multiple testing, accounting

for discrete nature of the data.

The procedure has high power when all loci are subject to similar evolutionary

forces causing deviations from the Hardy-Weinberg equilibrium. Individual ad-

justments with the exact test are feasible for moderate numbers of loci (k), with

2k − 1 computations, but very good approximations have been found that reduce

computational load from exponential to quadratic dependence on the number of

loci.

Special attention has been paid to situations with large numbers of tests and to

specific issues of combining and adjusting p-values resulting from them. The ques-

tions of combining and adjusting p-values address different statistical hypotheses,

but they are related through the closure principle.
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With many tests, false positives are expected, and benefits and disadvantages

of global methods with the weak FWER protection, methods that strongly control

FWER, and methods for controlling the false discovery rate have been discussed

and studied.

We proposed new methods for combining sets of independent p-values within

and across studies and described extensions that allow for correlations between

p-values. These procedures are based on the distributions of truncated products

and products of first order statistics from the uniform and beta distributions. De-

pending on the value of the truncation point or on the number of p-values included

into the product, the null hypotheses of τ -method and κ-method reduce to those of

methods for individual adjustments or of Fisher’s combination test. Closed form

expressions are not always computationally efficient or available, but Monte Carlo

algorithms are easily implemented. These algorithms readily extend for the cases

of weighted and correlated observations. We found that these methods have good

potential in exploratory analysis. Using expression array data, we demonstrated

that it is possible to make inferences about average numbers of true effects in the

class of rejected hypotheses. We showed that it is possible to infer the plausible

number of false null hypotheses from comparisons of numbers of rejected hypothe-

ses made by individual adjustments methods and by combination methods.
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