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ABSTRACT

In recent years, genome-wide association studies (GWAS) have uncovered a large number of sus-

ceptibility variants. Nevertheless, GWAS findings provide only tentative evidence of association,

and replication studies are required to establish their validity. Due to this uncertainty, researchers

often focus on top ranking SNPs, instead of considering strict significance thresholds to guide repli-

cation efforts. The number of SNPs for replication is often determined ad hoc. We show how the

rank-based approach can be used for sample size allocation in GWAS as well as for deciding on a

number of SNPs for replication. The basis of this approach is the “ranking probability”: chances

that at least j true associations will rank among top u SNPs, when SNPs are sorted by P -value. By

employing simple but accurate approximations for ranking probabilities, we accommodate linkage

disequilibrium (LD) and evaluate consequences of ignoring LD. Further, we relate ranking proba-

bilities to the proportion of false discoveries among top u SNPs. A study-specific proportion can

be estimated from P -values, and its expected value can be predicted for study design applications.

http://dx.doi.org/10.1534/genetics.111.130542
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INTRODUCTION

After a large-scale association study is completed, researchers are faced with the question of how

many strongest signals to follow up on. P -values of association tests are commonly used to sort

SNPs, and the most significant SNPs are considered candidates for replication. The exact number

of follow-up SNPs is often determined in an informal way and may well exceed the number of

SNPs deemed significantly associated. Statistical methodology can be used instead to determine

that number. The rank-based approach that we develop here allows to establish a “model-based”

number of follow-up SNPs, before conducting any association tests. In addition, this approach

provides a usually lower, “data-based” number, guided by the ordered P -values that were actually

observed in a study. In our approach, SNPs with prominently small P -values are followed up on,

as well as any additional SNPs from the model-based calculation.

The model-based number of follow-up SNPs, u, would be determined based on an association

model, to ensure a certain probability that a desired number of true associations is included. Alter-

natively, one can choose the number of follow-up SNPs before collecting subjects for a GWAS and

find the sample size required for a desired number of true associations to be included among the

chosen number of SNPs. Rank-based approach can be used in place of the usual power calculations

and serves a related purpose (SATAGOPAN et al. 2004; GAIL et al. 2008; SATAGOPAN et al. 2002;

ZAYKIN and ZHIVOTOVSKY 2005). In power calculations, the exact α (significance) threshold is

predetermined, rather than the exact number of smallest P -values.

The rank-based approach has a number of attractive features.

1. SNP-specific weighting can be easily incorporated for prioritizing results of a study by speci-

fying different prior probabilities of association for different SNPs. With this approach, SNPs

in a GWAS can be weighted differentially or organized into “tiers”, depending on whether

they belong to a candidate pathway.

2. The approach is general in that it utilizes information contained in P -values that may origi-

nate from a variety of association tests. Parametric P -values of SNP or multilocus tests can
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be used as well as permutational P -values.

3. There is only a weak dependence of ranking probabilities on LD. Probability that a true asso-

ciation will rank among top u SNPs quickly becomes essentially the same for correlated and

independent SNPs, as u increases. This peculiar feature has been noticed previously in simu-

lation studies (ZAYKIN and ZHIVOTOVSKY 2005) and here we investigate this phenomenon

more fully.

4. It is often more appealing to researchers to think in terms of a number of SNPs rather than in

terms of a significance threshold.

5. Rank-based approach has a clear connection to false discovery rate (FDR) (BENJAMINI and

HOCHBERG 1995) and to Bayesian measures of association (WAKEFIELD 2007).

6. For simple models, ranking probabilities and related measures are trivially evaluated. For

example, assuming 500,000 chi-square tests and noncentrality 15 for a true association, the

probability that the true association will rank among the first hundred non-associated SNPs

can be evaluated by a single R command (R DEVELOPMENT CORE TEAM 2007) as

"1-pchisq(qchisq(1-(100/(5e5+1)),df=1),df=1,ncp=15)"

METHODS

Ranking probabilities and FDR: Ranking probability Pj,u is the probability that at least

j out of m true association P -values will have rank smaller than u in a sorted list of P -values,

{P(1), . . . P(k)}, where k is the number of tests. A precise approximation toPj,u under independence

of P -values is given by

Pj,u = FY(j)

(
u− j + 1

(k −m+ 1)(1 + 1/u)

)
(1)
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where FY(j)(·) is the cumulative distribution function (CDF) of j-th ordered true association P -

value that we denote by Y(j) (APPENDIX A). Equation (1) for j = u = 1 is the probability that

one of true associations will have the smallest P -value in a study. This is also equal to power to

detect at least one true association at the significance level of 1/(2L).

Ranking probability is closely related to the FDR. BENJAMINI and HOCHBERG (1995) sug-

gested a method to control the expected proportion of false discoveries among discoveries (i.e.

among rejections of a hypothesis) times the power:

FDR = E

{
F

T + F
| T + F > 0

}
Pr(T + F > 0)

where T , F are the numbers of true and false rejections. In association mapping scenarios, Pr(T +

F > 0) can decrease, as the number of tests increases, for example, if the proportion of true

associations (m/k) decreases with the number of tests. Thus, the expectation part, namely, the pro-

portion of false discoveries among discoveries, also known as conditional or positive FDR (pFDR)

(STOREY 2002) may not always be controlled with this method (ZAYKIN et al. 2000). The pFDR

is related to the false positive report probability (FPRP) (WACHOLDER et al. 2004) and to q-value

(STOREY 2002). If the prior probability of false associations is Pr(H0), and P -values for true

effects have a common CDF FY (·), then for a fixed P -value rejection threshold α

pFDR(α) = FPRP(α) =

[
1 +

1− Pr(H0)

Pr(H0)
× FY (α)

α

]−1

(2)

FY (α) is the CDF for a true association P -value. It is equal to power at the α level, i.e. the probabil-

ity that a true association P -value is ≤ α. FPRP and q-value are essentially the same concepts, but

the q-value approach involves estimation of Pr(H0) and FY (·) from data. Both approaches plug in

the observed P -value (p) in place of α. Thus, FPRP(p) can be interpreted as an average proportion

of false positives in future experiments, provided that the α-level is readjusted to α∗ = p.

While FPRP and q-value are related to the average proportion of false positives for a fixed α-

level, it is of interest to estimate the proportion of false positives at and below a particular ordered
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P -value. For example, if we take u smallest P -values from a genome scan, what would be the

expected proportion of false positives among P(1), . . . P(u)? We term this quantity the rank-FDR,

rFDR(u), and express it in terms of ranking probabilities as

rFDR(u) = 1− 1

u

min(u,m)∑
j=1

Pj,u (3)

In terminology of GAIL et al. (2008), 1–rFDR is the “proportion positive” (PP). They also intro-

duced the “detection probability”, defined as (PP×u)/m.

Equation (3) can be used for calculating the model-based number of follow-up SNPs, by finding

the value u that controls the chosen value of rFDR. Alternatively, one can control the probability

that at least j true associations are found among top u results. This is given by a single value, Pj,u,

and is analogous to probability of making one or more type-I errors in the usual family-wise error

rate control.

The rFDR can also be expressed as an expectation using ordered P -values. Assuming a con-

tinuous test statistic, the P -value density for true associations is fY (p) = dFY (p)/dp. Then the

posterior probability that the observed j-th ordered P -value (denoted by lowercase p(j)) is a false

association (i.e. posterior probability of the null hypothesis, H0) is

Pr(H0|p(j)) =

[
1 +

1− Pr(H0)

Pr(H0)
fY (p(j))

]−1

(4)

Note similarities and differences of Equations (2) and (4). Expectation of Equation (4), that is, the

average value across many association studies, corresponds to the true proportion of P(j) that are

false associations. The rFDR can also be expressed in terms of Equation (4):

rFDR(u) = E

{
1

u

u∑
j=1

Pr(H0|p(j))

}
(5)

A similar result cannot be obtained by averaging FPRP(p) or q-values, that is, pFDR at a fixed

threshold, pFDR(α), cannot be expressed as an expectation of pFDR computed using plugged in
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P -values, pFDR(p). The main distinction between the rFDR and the pFDR approaches is that the

rFDR is defined for a rank, whereas pFDR is defined for a threshold.

Strictly, the right-hand side of Equation (5) is defined for a scenario where the number of

true associations is not fixed, but is rather assumed to have a binomial distribution with the rate

1 − Pr(H0) and the expectation m. When m is assumed to be fixed in the computation of Pj,u,

there is a slight discrepancy between Equations (5) and (3) for values ofm that are close to one. The

distinction between random and fixedm affects the definition of FY(j)(·). For example, when all Y ’s

have the same distribution, then under the fixed m assumption, FY(1)(y) = 1 − (1 − FY (y))m, but

with the binomial m, it is
∑k

m=1wm [1− (1− FY (y))m], where k is the total number of P -values

and wm are binomial probabilities of observing m true effects.

Estimation of rFDR: The model-based rFDR is the expected proportion of false discoveries,

and it can be computed by Equation (3) using sample sizes, assumed number of true effects, and

effect magnitudes. Its main application is planning of studies. For example, one can estimate

sample size N required for the proportion of true effects to be reasonably high among the best 100

P -values. Alternatively, if N given, one can estimate the number of best results to follow up on.

On the other hand, the sum of probabilities under the expectation operator in Equation (5) involves

random ordered P -values that could have been observed in any particular experiment. Therefore, a

study-specific rFDR among the u most significant P -values can be estimated as

r̂FDR(u) =
1

u

u∑
j=1

Pr(H0|p(j)) (6)

This requires a specification of the P -value density for true associations, fY (·), which will now be

given. Asymptotic normality of a test statistic can often be assumed, and a parametric distribution

such as a normal or a chi-square is often justified. Conditional on γ, the CDF of P -value for true

associations can be modeled as

FY (p | γ) = 1−Gγ

(
G−1

0 (1− p)
)

(7)
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where G0(·) and Gγ(·) denote the CDF of the test statistic under the null and the alternative hy-

pothesis and γ is a parameter that governs power, such as noncentrality parameter of a chi-square

statistic. The noncentrality is computed by substituting expected frequencies into the chi-square

statistic. For example, the noncentrality of a usual chi-square test that compares allele frequencies

between two groups, such as cases and controls, with sample sizes N1 and N2 has the noncentrality

γ =
(q1 − q2)2[(

1
2N1

+ 1
2N2

)
q̄(1− q̄)

]
where q1, q2 are case and control allele frequencies and q̄ = (N1q1 +N2q2)/(N1 +N2). In a logistic

regression model, the noncentrality is approximately

γ = Nβ2q(1− q) (8)

where β is the assumed log odds ratio, q is the population allele frequency and N is a weighted

harmonic mean of N1, N2 with weights q1(1 − q1) and q2(1 − q2). For a common value of γ, the

density fY (·) in Equation (4) can be found as follows. First, we define P -value density for a fixed

γ:

fY (p | γ) =
gγ
(
G−1

0 (1− p)
)

g0

(
G−1

0 (1− p)
)

where g(·) is the density that corresponds to the distribution G(·). Assuming some distribution of

effect sizes among true associations, h(γ), the density of P -values for true associations is

fY (p) =

∫
h(γ)fY (p | γ)dγ (9)

PARK et al. (2010) proposed a method to estimate both the number of true effects (m) and their dis-

tribution in large-scale association studies. They also reported tabulated frequencies of effect sizes

for several diseases. In their approach, effect size is expressed as ES = 2β2q(1− q); thus, given a
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sample size N , an empirical distribution of noncentrality can be obtained from the distribution of

ES by Equation (8), i.e. γ = ES×N/2. A probability distribution, such as gamma, can be fitted to

the empirical distribution of effect sizes. This gives h(γ), and further, when k is the total number

of P -values in a study, Pr(H0) can be taken as 1−m/k.

When effects sizes are defined as in PARK et al. (2010), ranking probabilities are related to

r̂FDR(u) as

1− 1

u

min(u,m)∑
j=1

Pj,u = E
{

r̂FDR(u)
}

(10)

Alternatively, it is possible to specify a prior distribution for β (WAKEFIELD 2007), in which case

the ES and the noncentrality distribution will depend on allele frequency at a particular SNP through

the term q(1 − q). In this case, Equation (10) will no longer hold, because rankings by P -values

and by posterior probabilities will not always be the same. See (WAKEFIELD 2009, 2008) for an

illuminating discussion of rankings by P -values and by Bayesian measures of association.

rFDR and ranking probabilities under LD: To account for LD amongL non-associated

SNPs, we utilize the concept of “effective number of tests”, denoted by Le. Due to LD, Le is

generally smaller than L, and accordingly we need to consider an “effective rank”, ie as well.

The effective rank parameter had been considered previously by Dudbridge in the context of false

discovery rates estimation (Dudbridge, unpublished). Dudbridge and Gusnanto (DUDBRIDGE and

GUSNANTO 2008) showed that the effective number of tests in a GWAS may exist and is specific

to a given set of SNPs and a population. The effective number of tests in GWAS has been primarily

considered in multiple testing applications, as a means to mitigate conservativeness of adjusting

significance level by the number of SNPs (DUDBRIDGE and GUSNANTO 2008; MOSKVINA and

SCHMIDT 2008; PE’ER et al. 2008; HAN et al. 2009; GAO et al. 2010). Theoretically, Le is

related to the “extremal index”, θ, which arises as a parameter in the asymptotic distribution of

the maximum order statistic (LEADBETTER et al. 1983). APPENDIX B details calculations of Le.
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Ranking probabilities that incorporate Le can be estimated with the following approximation:

ue = j + (u− j)(Le − 1)/(L− 1) (11)

Pj,u ≈ FY(j)
[
Q1/2(ue − j + 1, Le − ue + j)

]
(12)

where Q1/2(ue − j + 1, Le − ue + j) is the median of Beta(ue − j + 1, Le − ue + j) distribution.

When LD is present, but Le cannot be estimated or guessed, we recommend use of the following

approximation:

Pj,u ≈ FY(j)

(
u− j + 1

L+ 1

)
(13)

A guess value of Le can often be taken, because as we will show, effect of LD on ranking proba-

bilities is generally small, and only affects probabilities at small values of u. Moreover, all three

equations, (12,13,1) give similar results as u becomes larger, even when Le/L is small. The rFDR

estimates are similarly robust in the presence of LD due to their relation to ranking probabilities

(Equation 10)

Simulations to evaluate accuracy of the rFDR estimation: Estimation of rFDR by

Equation (6) involves specification of the effect size distribution for the assumed number of true

associations. These parameters were modeled after the empirical distribution for Crohn’s disease,

as reported in PARK et al. (2010). Park and colleagues’ method allows one to obtain a table of

binned effect sizes (ES) with their respective frequencies. Tabulated distribution for the noncen-

trality for 142 susceptibility loci was obtained from the distribution of ES as γ = ES × N/2,

assuming equal sample sizes for cases and controls (N = 2000). The probability distribution h(γ)

in Equation (9) can be fitted to such frequency data. We assumed a gamma distribution for h(γ)

and fixed the shape parameter to be one, to allow a high proportion of very small effects. We

also assumed that the distribution was truncated at the maximum observed noncentrality plus ten.

The scale parameter was fitted by minimizing squared difference between quantiles of the em-
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pirical distribution and h(γ). Alternatively, maximum likelihood or method of moments methods

can be used. We assumed a two million SNP GWAS with the extent of LD modeled to provide

Le/L = 0.4, as has been observed in HapMap data (HAN et al. 2009). APPENDIX C gives details

for simulation of correlated P -values. In every simulation, we recorded which ones of 15 smallest

P -values were true associations. From this information, the actual proportion of true associations

across simulations was computed for each of P(1), . . . , P(15). These values were compared to the

values Pr
(
H0 | p(1)

)
, . . .Pr

(
H0 | p(15)

)
, estimated by Equation (4) and averaged across simula-

tions. Distribution of the actual total number of true associations among 15 smallest P -values was

compared to the estimates obtained from P -values by Equation (6). We performed over 100,000

simulations to construct Table 1.

Simulations to evaluate accuracy of ranking approximations: We evaluated the

accuracy of our approach using real GWAS data from a schizophrenia scan (SUAREZ et al. 2006).

We also used simulated GWAS data with deliberately high, block-structured LD to assess the ro-

bustness of our approach in the presence of extreme LD and under conditions when the extremal

index distribution (Equation B1) does not describe the asymptotic distribution of the minimum P -

value. We considered the probability of capturing at least one true association and computed four

types of ranking probabilities for each scenario:

1. Empirical (“gold standard”) ranking probability, denoted by “True” in Tables 2–4. To calcu-

late empirical ranking probabilities, we used a simulation approach as follows. For each of

100,000 simulations, we shuffled the affection status in the GWAS data set, and computed

the trend test and its P -value for each non-associated SNP. P -values for true associations

were obtained from data generated according to genetic models described below. Then we

ranked P -values for both associated and non-associated SNPs, and recorded ranks of the true

associations. Based on all simulations, we estimated the empirical probabilities that at least

one true association will rank below the i-th false positive, Pr
(
min(Y ) ≤ X(i)

)
. The same

probabilities can also be expressed in terms of ranking below the i-th P -value rather than
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below the i-th false positive (Equation A1).

2. Median-based approximate ranking probability that accounts for the LD among non-associated

SNPs denoted by “Le-based” in the tables:

Pr
(
min(Y ) ≤ X(i)

)
≈ Fmin(Y )

[
Q1/2(ie, Le − ie + 1)

]
(14)

To obtain a sample of minimum P -values to estimate the effective number of tests for the

calculation of the Le-based approximation, we used a simulation approach just described.

At each simulation, we recorded the minimum P -value for non-associated SNPs and used

Equation (B4) to estimate Le.

3. Median-based approximate ranking probability assuming independence of non-associated

SNPs, denoted by “Median-based” in the tables:

Pr
(
min(Y ) ≤ X(i)

)
≈ Fmin(Y )

[
Q1/2(i, L− i+ 1)

]
(15)

4. Mean-based approximate ranking probability assuming independence of non-associated SNPs„

denoted by “Mean-based” in the tables:

Pr
(
min(Y ) ≤ X(i)

)
≈ Fmin(Y )

(
i

L+ 1

)
(16)

We conducted four simulation experiments with the first two based on the schizophrenia scan,

where we retained 701,080 SNPs with a minor allele frequency of at least 0.025.

In the first experiment, we added five independent true associations with the same effect size,

assuming a multiplicative model of disease risk for each SNP. In addition, we assumed multiplica-

tive risk for joint effect of the five SNPs. We considered the Armitage trend test and retrospective

sampling with 1301 cases and 1300 controls. We computed the noncentrality parameter (γ in Equa-

tion 7) by the formula given in Ahn et. al. (AHN et al. 2006). We assumed that each true association
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is in Hardy-Weinberg Equilibrium (HWE) in the population, with the risk allele frequency of 0.2.

We used the base allele risk a=0.05 and considered the log of relative risk lnR=0.206. In this

model, susceptibilities for each of the five true associations are Pr (case | gi) = a2Ri, where gi is

the genotype with i copies of the risk allele. Probabilities of genotypes for the cases and for the

controls were obtained by the Bayes rule. These probabilities were used to obtain the actual case

and control genotypes via multinomial sampling. This setup was used to construct Table 2. Using

Equation (B4), we estimated the extremal index for this experiment to be θ̂=L̂e/L=0.590.

In the second experiment, we modeled 11 SNPs in a region harboring an “unknown” causal

mutation (that is, this causal SNP was removed from association analysis). The 12-SNP haplo-

type frequencies, including the mutation, were modeled based on the haplotype frequencies of the

µ-opioid receptor (SHABALINA et al. 2009). These haplotype frequencies were used to create sam-

ples of haplotypes. Haplotypes were randomly paired to create diploid individuals. The fifth SNP

with the minor allele frequency of 0.24 was chosen to be the causal variant. This causal SNP was

contributing additively to a quantitative trait value, assuming different trait means for the two al-

leles, m1=10, m2=20, and a normally distributed random contribution with the standard deviation

σ=76.72 (this value was chosen to give a similar empirical probability, Pr
(
min(Y ) ≤ X(1)

)
, to

that obtained in the first experiment). For example, the trait value for an individual i that was het-

erozygous at the mutation was modeled asm1 +m2 +N(0, σ2). The 12-SNP haplotype frequencies

determine pairwise LD of the causal variant with the eleven markers. These eleven correlation co-

efficient values of LD (WEIR 1996) were 0.15, 0.17, 0.17, 0.24, 0.63, 0.78, 0.78, 0.79, 0.94, 0.95,

0.96. The causal SNP was removed from the data. Regression F -test P -values for association of

the number of copies of the minor allele in an individual (0,1,2) with the trait were computed for

all SNPs. The function Fmin(Y )(·) needed to compute ranking approximations, was estimated by

the empirical distribution function (using “ecdf” function in R) from a sample of the minimum of

P -values for the 11 SNPs. Note that to estimate the function, one only needs to obtain a single

large sample of the minimum P -values. This setup was used to construct Table 3.

The third experiment was aimed to demonstrate that our approach remains valid even under
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unrealistically high, block-structured LD. For this experiment, we modeled correlated P -values

directly by the method described in APPENDIX C. We considered a single true association, with

a P -value derived from a chi-square statistic with the noncentrality parameter set to 18.42 to yield

10% power at the genome-wide significance level 0.05/L. We assumed two million non-associated

SNPs (L = 2× 106), and performed 100,000 simulation replicates.

RESULTS

Table 1 gives proportions of true positives among each of 15 smallest P -values, assuming the effect

size distribution and the number of disease loci estimated for Crohn’s disease (PARK et al. 2010).

There is some bias in the estimated values for low ranks, due to LD (the ratio of the effective

number of tests to the actual number, Le/L, was 0.4 in these experiments). This bias is entirely

due to LD: the last two columns of the table constructed under linkage equilibrium (LE) show that

the estimates are unbiased in this case. The bias can be reduced by using the following ad hoc

correction to the prior. For i-th P -value, we modified the original prior Pr(H0) = 1−m/(L+m)

as

Pr(H0) = 1− (fe/f0)1/im/(L+m) (17)

where fe = ie/(Le + 1), f0 = i/(L + 1), and ie is the effective rank (Equation B2). The rationale

behind the correction is based on the relation Pr
(
min(Y ) < X(1)

)
= 1− E

{
Pr(H0 | p(1))

}
. The

minimum false association X(1) on the left-hand side behaves approximately as the minimum of

only Le P -values. Thus, for P(1), we may adjust the prior probability used to evaluate the right-

hand side by the amount that is approximately equal to L/Le. Further, we want the adjustment

factor to quickly approach 1 as the rank increases. Figure 1 shows the distribution of the actual

total number of true associations among 15 smallest P -values, the distribution of estimated values

obtained from P -values by Equation (6), and the distribution for their difference. There is a good

correspondence in the mean values for the true and the estimated distributions. The difference

distribution is centered around zero, at 0.21 (-0.02 if the “corrected” prior were used instead).



Causal loci ranking for GWAS and replication 14

There are about four true positives among 15 smallest P -values, on average. We note that in

experiments with no true associations, the method still predicts about two associations on average,

because the prior wrongly assumes 142 disease associations, but the probability of predicting four

or more associations is less than 10%. The model-based calculation assuming independence, by

using the approximation in Equation (3) shows that among the first ten smallest P -values, 31%

are expected to be true positives. The true value, observed in simulations, is only slightly higher

(32%). Among the first 100 P -values, only 7% are expected to be true positives; this is about 5%

of the total number of true associations, 142. Using the ranking probability equation (13), we can

estimate that for the probability of capturing at least five associations to be 80%, one would need

to follow up on 80 smallest P -values (P5,80 ≈ 0.8). To capture at least ten associations, one would

need to follow up on 550 strongest signals (P10,550 ≈ 0.8).

Rank-based calculations can be related to a more common calculation of statistical power. With

the assumed parameters for the true associations, the α-level for detecting at least one true asso-

ciation with 90% power would have to be set at 1.1/Le. This is considerably higher than what

would be given by multiple testing thresholds that take into account just the number of tests, such

as α = 0.05/Le, and therefore, false positives are also expected with this approach. A comparable

calculation with the rank-based approach is to find the minimum u, such that P1,u ≥ 0.9, which

gives u = 3.

The main purpose of Tables 2–4 is to illustrate accuracy of our approximations for ranking

probabilities. Table 2 presents results for the 700K schizophrenia scan for five independent true

associations. By comparing the empirical probability with approximate probabilities based on our

approach, we studied the ranking probability that at least one of these true associations will rank

among the top-i false positives (Equation A1 gives a conversion formula for ranking in terms of the

top-u P-values, rather than top-i false positives). Empirical probabilities are estimates of true prob-

abilities, since they were obtained by sorting the actual P -values, computed via the Armitage trend

test that was applied at each simulation run to all 700K SNPs in LD. Empirical ranking probabilities

are very similar to the approximate values in the second column, computed by the approximation
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that incorporates LD. Thus, our approach that incorporates the effective number of tests accounts

well for LD in this data. It is apparent that ignoring the LD has very little effect on ranking prob-

abilities for ranks as low as 10 (columns 3 and 4). Usage of either median or mean of the beta

distribution (Equations 15, 16) yields similar ranking probabilities. Mean-based approximation

yields values that are somewhat closer to empirical values. Similar conclusions were reached for

probabilities of capturing all, rather than at least one true associations (data not shown). Results

in Table 3 were obtained using the schizophrenia GWAS data as well. Here, we considered eleven

correlated SNPs in a region harboring an untyped causal variant, and a continuous phenotype. We

reached similar conclusions with this setup.

In addition to the results presented for the schizophrenia data set, we also evaluated our ap-

proach using two GWAS data sets for breast cancer and prostate cancer (HUNTER et al. 2007;

YEAGER et al. 2007). Results for ranking probabilities obtained for these analyses were very simi-

lar to those obtained for the schizophrenia data (data not shown). Interestingly, ratio of the effective

number of tests estimate over the number of SNPs, θ̂ = L̂e/L, was very similar for the breast cancer

(θ̂ =0.710) and the prostate cancer data sets (θ̂ =0.717), which both consisted of Caucasian individ-

uals and shared most of the SNPs. This finding reaffirms conclusions by Dudbridge and Gusnanto

(DUDBRIDGE and GUSNANTO 2008) who found consistency of the Le estimates obtained for the

two control data sets of the Wellcome Trust Case Control Consortium (THE WELLCOME TRUST

CASE CONTROL CONSORTIUM 2007) (WTCCC) panel. The two corresponding extremal index

values for the WTCCC data are similarly close: 0.58 and 0.59.

These observations suggest that once an effective number of tests estimate is obtained for a

specific panel of SNPs, it can be reused for GWAS utilizing similar SNPs and samples from pop-

ulations of similar ancestry. Additionally, two different designs that we used resulted in similar

values of Le. For the schizophrenia data, we obtained Le=0.590 for the retrospective design with a

case-control trend test. A similar estimate, Le=0.610 was obtained for a prospective design with a

regression test and a continuous trait.

In Table 4, we focused on the probability that a true association will rank among the top-i
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highly correlated false positives. In these simulations, the effective number of tests was only 6.4%

of the actual number of tests, and the behavior of the minimum P -value was incompatible with

the extremal index distribution given by Equation (B1) as judged by the Kolmogorov-Smirnov

test. Again, we found that the Le-based approximation gave ranking probabilities that were very

close to the empirical values across the studied range of i values. Approximations that ignore LD

underestimate ranking probabilities for low ranks. Nevertheless, as i increases, these estimates

quickly catch up with the empirical ranking probability. These results are reassuring in light of the

fact that ranked P -values from this setup do not follow the extremal index distribution. Similar

results were observed for relatively small numbers of tests (not shown).

DISCUSSION

We propose ranking-based strategies for design of large-scale association studies and for following

up on best ranking associations. With our approach, one can determine an optimal number of SNPs

to carry forward into a replication study, based on the sample size of the study and on the assumed

model for effect sizes. This “model-based” step (Step 1) is based on calculating the proposed

rFDR by Equation (3). It is reminiscent of a power calculation in that the results of association

tests are not used in this step. The number of follow-up SNPs determined this way represents

an expectation across multiple studies (Equation 10). In Step 2, the smallest P -values actually

observed in a given study are used to estimate the study-specific rFDR (Equation 6). One would

use this equation to find the largest value of u for which r̂FDR(u) is at the desired level. Then

u SNPs with the smallest P -values are followed up on, plus any additional ones, as determined

in Step 1. The reason for following up on a potentially larger, “model-based” number, given by

Step 1, is a sampling variability of study-specific estimates, illustrated in Figure 1. The averages

of true and estimated values (means of the left and the middle histograms of Figure 1) correspond

very well, but there is variation in both true and estimated values, as well as in their difference

(given by the histogram on the right). There is a chance that none of the best results would have a
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high true association probability, either because none of them are true associations, or because the

probability estimates happened to be incorrect. But one would not discard results of a large-scale

study for the reason that too few or none of the P -values came out “non-significant”. SNP densities

that are currently in use are sufficiently high to ensure coverage of truly associated regions. Even if

none of the association tests in a GWAS reach statistical significance, SNPs scoring at the top still

constitute putative associations.

At first glance, it may appear that unlike P -value adjustment methods, the methods that we

advocate have a disadvantage in that they depend on prior parameters, namely on the effect size

distribution and the number of trait loci. However, in our view, proper applications of P -value

adjustments must rely on the same assumptions. Multiplicity adjustments correct the raw α-level

by the number of tests, but the α-level itself must be chosen based on power calculations which are

much in the same way affected by the assumed number of effects, their distribution and the sample

size of the study. Two studies with different sample sizes or different number of trait loci will have

a different expected proportion of true associations with P -values that are below the same α level.

Relation of our approach to power can be seen more formally from our approximations: expectation

for estimated posterior probability for the minimum P -value to be a true positive is equal to power

at the significance level 1/(2L). Thus, in applications of P -value adjustment methods, the same

prior parameters must be taken into account in decisions regarding an appropriate significance

threshold for a study. Moreover, with our approach, it is straightforward to prioritize association

results by simply specifying relatively higher prior probabilities of association to SNPs that belong

to candidate pathways.

Many existing methods used for sample and marker allocations to single and multi-staged

GWAS assume independence of SNPs. An analytic approach described here explicitly accommo-

dates LD. Although simulation techniques can also be used to model LD, typically such a technique

would have to utilize data from a particular GWAS. This limits applications of the simulation ap-

proach for design of future studies because the data required for simulations would have yet to be

collected. A virtue of our approach is that it provides insights about the effect of LD on the ranks of
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true positives. In particular, it reveals consequences of the independence assumption, which have

been poorly understood. Our results show that the approximation based on the effective number of

tests in a GWAS (Le) successfully accounts for the effect of LD between L SNPs. We found this

method to work well even when the minimum P -value does not asymptotically follow the distribu-

tion predicted by the extremal index theory. This observation is explained by the fact that validity of

our approach depends only on similarity of medians of the theoretical and the actual distributions,

rather than on similarity of entire distributions. In fact, Le does not need to exist when interpreted in

the conventional sense as a parameter governing behavior of the smallest P -value. The θ = Le/L

values appear to be very similar for similar panels of SNPs and samples from populations of similar

ancestry. Our estimates of θ for two different samples genotyped on the same platform are within

one percent of each other. Similarly, there is only one percent difference between θ estimates for

the two control samples from the WTCCC data (DUDBRIDGE and GUSNANTO 2008). Further, we

showed theoretically and confirmed via applications to GWAS data that as the rank value increases,

the effect of LD on the ranking probability quickly becomes negligible. This reaffirms and general-

izes our earlier observation from simulation studies that ranks of true associations appear to be little

affected by LD (ZAYKIN and ZHIVOTOVSKY 2005). This surprising property holds even when the

extent of LD is unrealistically high. In a GWAS with L SNPs, LD for moderate values of ranks can

be ignored as long as 1/L is much smaller than Le/L. In practical applications, ranking probability

may be set to some high value P , such as 0.90, and one would then compute the value of rank i

such that the ranking probability is greater or equal to P . Unless the resulting value of i is small,

ranking probabilities computed using the independence assumption yield values that are very close

to exact values. Even for low values of ranks, bias due to usage of independence assumption is

small.

The rank-based approach can be used for determination of sample size while planning a study.

Just as with a power calculation, one would assume an effect size and the number of tests. Instead of

determining a sample sizeN , needed for a true association P -value to be as small as α/L with 90%

probability (as in a power calculation), one could determine N such that at least j true association
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P -values will end up among a specified number (u) of best results with 90% probability. This gives

the ranking probability, Pj,u; alternatively, rFDR can be controlled by the sum of Pj,u (Equation 3).

In summary, our ranking approach provides a simple and intuitively appealing framework for

planing and analysis of large-scale association studies. This approach is broadly applicable due to

its robustness in the presence of extreme and heterogeneous LD. Although our approximations are

mainly developed assuming a large number of SNPs, they work well when the number of SNPs

is small, as found in candidate gene studies. These features make our approach well suited for

studies with different marker densities and LD patterns, including studies utilizing next-generation

sequencing data. For practical use, we provide software that allows one to estimate ranking proba-

bilities, number of SNPs that would contain true associations with a specified probability, as well

as to plan discovery and replication stages in GWAS.

URLs

Software implementing the methods described here is available at the NIEHS website,

(http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/zaykin/index.cfm), or by

request to the authors.
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APPENDIX A

Approximations for ranking probabilities: We consider a set of true association

P -values, {Y1, . . . , Ym}, and a set of false association P -values, {X1, . . . , XL}, that are ordered

together. Ranking probability as defined in METHODS is equivalent to the probability that the j-th

true association P -value will rank below the P -value with the rank u ≤ L, i.e. Pr
(
Y(j) ≤ P(u)

)
.

We can write the ranking probability in a mathematically convenient way that separates true and

false associations:

Pj,u = Pr
(
Y(j) ≤ P(u)

)
= Pr

(
Y(j) ≤ X(u−j+1)

)
(A1)

A random i-th ordered P -value among non-associated SNPs is denoted by X(i). Its cumulative and

probability distribution functions (CDF and PDF) are denoted by FX(i)
(·) and fX(i)

(·), respectively.

Similarly, FY (·) and fY (·) are the CDF and the PDF for a true association.

When Y ’s are independent and have the same distribution, the CDF of Y is given by Equation

(7) and the CDF of the j-th ordered Y has a standard form, FY(j) = 1− Binom(j − 1; m,FY (p)),

where Binom denotes the binomial CDF evaluated at j − 1 successes in m trials with the success

probability FY (p). Otherwise, the distribution FY(j) can be estimated by the empirical CDF from

a sample of P -values obtained under a suitable association model. For O simulation samples, a

O × m matrix of P -values (P) can be obtained. After the rows of P are sorted, F̂Y(j) is given

http://www.ncbi.nlm.nih.gov/gap
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by the empirical CDF, e.g. by “ecdf” function of R, applied to the j-th column of the matrix. If

Y1 . . . Ym are independent, but different effect sizes are assumed, the corresponding P -values can

be sampled directly, provided the distribution of the test statistic is standard, such as chi-square:

Pi = 1 − G0

(
G−1
γi

(U)
)
, i = 1, . . . ,m, where U is a random number from the Uniform(0,1)

distribution. This formula can be obtained by inverting Equation (7).

We start with an independence assumption, namely that non-associated SNPs are themselves

independent. Considering a single true association for now, probability that the P -value for a truly

associated SNP will rank among i smallest null P -values is given by

Pr
(
Y ≤ X(i)

)
= 1−

∫ 1

0

∫ y

0

fX(i)
(x)fY (y)dxdy

= 1−
∫ 1

0

FX(i)
(y)fY (y)dy

= 1− EY
{
FX(i)

(Y )
}

(A2)

where FX(i)
is the CDF of Beta(i, L− i+ 1), if L non-associated P -values are independent and

continuous. When L = 1, this probability equals one minus the expectation of Y , µY , which was

termed “expected P -value” and advocated as a sensible alternative to power calculation by Sack-

rowitz and Samuel-Cahn (SACKROWITZ and SAMUEL-CAHN 1999). Although it is possible to

evaluate Equation (A2) by numerical integration or by simulation, a useful and precise approxima-

tion is obtained as follows. First, by means of changing the order of integration, we can rewrite

Equation (A2) as

Pr
(
Y ≤ X(i)

)
= EX

{
FY

[
F−1
X(i)

(1−X)
]}

(A3)

This operation replaces the random variable Y on the right-hand side of Equation (A2) with the

uniformly distributed random variable X . By using the first degree Taylor series approximation
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about E(X), we obtain

Pr
(
Y ≤ X(i)

)
≈ FY

[
F−1
X(i)

(1/2)
]

(A4)

= FY
[
Q1/2(i, L− i+ 1)

]
(A5)

≈ FY

[
i

(L+ 1)(1 + 1/i)

]
(A6)

where Q1/2 is the median of Beta(i, L− i+ 1).

APPENDIX B

Approximations for ranking probabilities under LD: For a variety of stationary

stochastic processes with distance-decaying dependencies, the distribution of the maximum of a

large number of observations {Ti} is Pr (max (T ) ≤ t) = Pr(T ≤ t)θL. The independence is a

special case with θ = 1. Considering the minimum of P -values, {Xi}, we can let Ti = 1−Xi, and

max(T ) = 1−min(X). Then the asymptotic distribution of min(X) under no association is

Pr (min(X) < x) = 1− (1− x)θL (B1)

which is the CDF of Beta(1, θL). Thus, the effective number of tests is Le = θL. The effective

rank is obtained by scaling the original rank i between 1 and Le:

ie = 1 + (i− 1)(Le − 1)/(L− 1) (B2)

The ranking probability is then obtained as

Pr
(
Y ≤ X(i)

)
≈ FY

[
Q1/2(ie, Le − ie + 1)

]
(B3)



Causal loci ranking for GWAS and replication 23

There is a concern that assumptions of the extremal index theory, such as stationarity, may not be

satisfied at high SNP densities. Indeed, Dudbridge and Koeleman found that at HapMap densities,

fit to a beta distribution may become inadequate (DUDBRIDGE and KOELEMAN 2004). However,

our approach does not require that the minimum P -value should follow a beta distribution: only

its median needs to be approximately equal to that of Beta(1, θL) distribution. Our requirement is

much weaker than the distributional assumption, and we will verify that our approach works well

even in those cases where the effective number of tests does not exist in the sense as defined by the

asymptotic distribution in Equation (B1). Dudbridge and Gusnanto (DUDBRIDGE and GUSNANTO

2008) gave the method of moments estimator for Le as (1− p̄) /p̄ where p̄ is the sample average

of minimum P -values under the null hypothesis. It is also straightforward to derive the maximum-

likelihood estimator (MLE) as

L̂e = −k/
k∑
i=1

ln(1− pi) (B4)

where {pi} is a sample of minimum P -values. In practice, one would repeat the following proce-

dure k times to obtain that sample: permute the affection status of individuals, perform an associ-

ation test for all SNPs, and record the minimum P -value. Usage of the effective number of tests

approach has an advantage in that once an estimate of θ̂ = L̂e/L is obtained, it can be reused for

computing ranking probabilities for a different data set that utilizes a similar set of SNPs and a sam-

ple from a population of similar ancestry. It is also possible to fit a two-parameter beta distribution

and obtain maximum likelihood estimates (MLE) for the two parameters, as suggested by Dud-

bridge and Gusnanto (DUDBRIDGE and GUSNANTO 2008). These estimates can be used to model

the distribution F−1
X(i)

in Equation (A4). Ranking probabilities evaluated by this approach according

to our simulation results were very close to those based on Le (results not shown). Based on the

form of Equation (A5), we expect that the independence assumption may work well even though in

practice P -values are in fact dependent, due to LD. The reason for this is the similarity of medians

Q1/2(i, L− i+ 1) and Q1/2(ie, Le − ie + 1) for a moderate i and a large L (cf Equation (A5)). As
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i increases, ie approaches θi, and the median of an intermediate order statistic approaches its mean

(WATTS et al. 1982). Thus, assuming that L is large and 1/L is much smaller than θ,

Q1/2(ie, Le − ie + 1) ≈ ie
θL+ 1

≈ θi

θL+ 1
≈ i

L+ 1

≈ Q1/2(i, L− i+ 1) (B5)

We also expect that a simpler, mean-based approximation is adequate for intermediate values of i:

Pr
(
Y ≤ X(i)

)
≈ FY

(
ie

Le + 1

)
(B6)

≈ FY

(
i

L+ 1

)
(B7)

One might be interested in the number of SNPs required to be genotyped in a follow-up study to

ensure for the ranking probability to reach some high value, such as P × 100% = 99%. In other

words, one might be interested in determining the index i in Equation (A5) for the probability

to be at least P = 0.99. A simple way to do that is to iterate i from one up to a value that

gives the required probability. The mean-based approximation also allows one to determine i by

solving Equation (B6). It follows that ie =
⌈
(Le + 1)F−1

Y (P)
⌉
, and from Equation (B2) i =

1 + (ie − 1) (L− 1)/(Le − 1).

APPENDIX C

Simulation of correlated P -values: For each simulation replicate, we sampled P -values

for the true associations by the inverse of Equation (7), as P = 1−G0

(
G−1
γ (U)

)
, where U is a ran-

dom number from the Uniform(0,1) distribution. We assumed the one degree of freedom chi-square

statistic. P -values for non-associated SNPs were sampled from the zero-mean Ornstein-Uhlenbeck

diffusion process (OUP). The OUP diffusion had been employed previously to address issues of

multiple testing in genome scans (LANDER and BOTSTEIN 1989; LANDER and KRUGLYAK 1995;
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ZAYKIN and ZHIVOTOVSKY 2005). Let us denote a normal score for the i-th SNP by Si, i=1, 2,

..., 2×106. We simulated Si for i > 1 by Si = Si−1e
−λ∆i + σ

√
(1− e−2λ∆i)/(2λ) εi, where εi is

a sample from the standard normal distribution, N (0, 1). This formula follows from considering

the conditional distribution (Si | Si−1), which is normal with the mean Si−1e
−λ∆i and the variance

σ2

2λ

(
1− e−2λ∆i

)
(GILLESPIE 1996). After {Si} were simulated, we converted them to P -values

using the unconditional limiting normal CDF of Si, N(0, σ2/2λ). The value S1 was simulated as

a draw from this distribution. For simulations with extreme, block-patterned correlation we used

following parameters. We used λ = 0.5 and σ2 = 100. Each non-associated SNP had a chance of

0.7 to be in a LD block. To model block-structured correlation, the location increment parameter,

∆i, assumed one of two values, 0.033, with probability 0.3, or 0.001, with probability 0.7. This

model resulted in extremely correlated P -values, with Le/L = 0.064. On average, autocorrelation

decayed from 0.99 for neighboring SNPs to 0.5 for SNPs 187.5 Kb apart. Between the blocks,

the autocorrelation decayed to 0.1 in 205.5 kB. Within the blocks, there was very little decay of

correlation: to 0.93 in a 200 kB block. To model studies with the HapMap ratio of Le/L=0.4, we

changed the two ∆i values to 0.1 and 0.07.
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TABLES

TABLE 1
Probability that u-th sorted P -value is a true association in a two-million simulated SNP

scan modeled after the effect size distribution for Crohn’s disease

Pr
(
HA | p(u)

)
under LD Pr

(
HA | p(u)

)
under LE

Rank (u) True Estimated Estimated∗ True Estimated
1 0.821 0.716 0.829 0.738 0.739
2 0.601 0.491 0.544 0.527 0.526
3 0.424 0.357 0.383 0.390 0.389
4 0.310 0.281 0.296 0.303 0.303
5 0.239 0.236 0.244 0.247 0.248
6 0.196 0.205 0.210 0.210 0.211
7 0.170 0.182 0.186 0.184 0.184
8 0.151 0.165 0.168 0.164 0.164
9 0.136 0.151 0.153 0.148 0.148

10 0.125 0.139 0.140 0.136 0.136
11 0.117 0.129 0.130 0.124 0.125
12 0.110 0.120 0.121 0.117 0.116
13 0.102 0.113 0.114 0.110 0.109
14 0.098 0.107 0.107 0.103 0.103
15 0.093 0.101 0.102 0.099 0.098

True: actual (empirical) probabilities, Pr
(
HA | p(u)

)
= 1− Pr

(
H0 | p(u)

)
.

Estimated: probabilities computed by Equation (6) with prior Pr(H0) = 1−m/k.
Estimated∗: probabilities computed by Equation (6) with a corrected prior (Equation 17)
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TABLE 2
Probability that at least one of five independent associations will rank among top-i false

positives in a 700K GWAS

Pr
(
min(Y ) ≤ X(i)

)
Rank (i) True Le-based Median-based Mean-based

1 0.193 0.195 0.158 0.183
10 0.413 0.415 0.409 0.414
25 0.538 0.537 0.535 0.537
50 0.635 0.635 0.634 0.635

100 0.726 0.730 0.729 0.730
200 0.815 0.815 0.816 0.815
500 0.904 0.905 0.904 0.904

1000 0.949 0.950 0.950 0.950
2000 0.977 0.978 0.978 0.978
5000 0.995 0.994 0.994 0.994

True: empirical ranking probabilities; Le-based: probabilities computed by Equation (14) using
the MLE of Le; Median-based: probabilities assuming independence, computed by Equation
(15); Mean-based: probabilities assuming independence, computed by Equation (16).

TABLE 3
Probability that at least one association in the µ-opioid gene will rank among top-i false

positives in a 700K GWAS

Pr
(
min(Y ) ≤ X(i)

)
Rank (i) True Le-based Median-based Mean-based

1 0.191 0.194 0.168 0.187
10 0.345 0.346 0.343 0.345
25 0.426 0.426 0.425 0.426
50 0.494 0.492 0.491 0.492

100 0.561 0.562 0.561 0.562
200 0.631 0.632 0.631 0.631
500 0.725 0.723 0.723 0.723

1000 0.787 0.787 0.787 0.787
2000 0.846 0.844 0.844 0.844
5000 0.906 0.907 0.907 0.907

True: empirical ranking probabilities; Le-based: probabilities computed by Equation (14) using
the MLE of Le; Median-based: probabilities assuming independence, computed by Equation
(15); Mean-based: probabilities assuming independence, computed by Equation (16).
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TABLE 4
Probability that one true association will rank among top-i false positives in a two-million

simulated SNP scan with extreme LD

Pr
(
Y ≤ X(i)

)
Rank (i) True Le-based Median-based Mean-based

1 0.382 0.398 0.210 0.231
5 0.415 0.424 0.333 0.338

15 0.460 0.468 0.424 0.426
25 0.489 0.497 0.468 0.469
35 0.511 0.520 0.498 0.499
50 0.537 0.546 0.530 0.531
75 0.571 0.578 0.567 0.567

100 0.596 0.601 0.593 0.593
500 0.735 0.737 0.735 0.735

1000 0.791 0.792 0.791 0.791
5000 0.897 0.898 0.898 0.898

True: empirical ranking probabilities; Le-based: probabilities computed by Equation (14) using
the MLE of Le; Median-based: probabilities assuming independence, computed by Equation
(15); Mean-based: probabilities assuming independence, computed by Equation (16).
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FIGURES

FIGURE 1 – Number of true associations among 15 best results in a two-million GWAS.

Figure legend: Left graph: the actual distribution. Middle graph: distribution estimated with
Equation (6). Right graph: distribution of differences between the actual and the estimated
number of true positives.


