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ABSTRACT

A formula for variance effective number (Ne) of a population considered for mitochondrial

haplotypes is derived and discussed. The notion and the formula refer to the female part of

the population. Ne = µ2
k(N − 1)/σ2

k, where N is the number of females, σ2
k is the variance of

reproductive success of individual females (measured in the number of progeny contributed

to the next generation), and µk is the mean number of offspring averaged over all the females.

The effective number (Ne) of a population, a notion introduced by Wright (1931), is a

critically important factor in consideration of natural populations (Lande and Barrowclough,

1987) and in simulations of population genetic processes (Beckenbach, 1994). Ne is the size of

an ideal population that exhibits the same temporal change of population parameters (allelic

and genotypic frequencies) as the real population under consideration. The ideal population

has constant size, equal numbers of males and females, random mating, and multinomial

contribution of parents to the next generation.

There are useful formulae (Crow and Kimura, 1970, pp. 345-365) which relate the size

of this ideal population with the size of a real population, taking into account temporal

changes of size, unequal sex ratio, and non-multinomial variance of individual reproductive

contributions. Depending on what characteristic of the real population, inbreeding coeffi-

cient or intergeneration variance of allelic frequencies, is being compared to that of the ideal
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population, one can speak of inbreeding or variance effective number. Crow and Kimura

(1970) gave formulae for the inbreeding and variance Ne for nuclear genes. Recently, much

research has focussed on mitochondrial genes (see Avise, 1994).

Birky et al. (1983) considered dynamics of frequency changes of mitochondrial and

chloroplast genes in cell lineages within organisms and among individuals in populations for

both diparentally and uniparentally transmitted organelle genes. However, these authors

did not address the problem of effective number of breeders; they just maintained that

the latter is approximately equal to the number of breeding individuals. Caballero (1994)

gives a formula for the variance Ne for a constant size population of haploid organisms

(which is applicable to the case of mitochondrial genes) and a formula for the case of n-ploid

population. The latter formula (eq. 28) can be solved for n = 1 (haploid case), but the

solution is different from our result (see discussion below).

We present here the formula for the variance Ne and its derivation. In our consideration

of the problem we follow the approach of Crow and Kimura (1970, pp. 345-365) and Crow

and Denniston (1988).

Though there are cases of diparental transmission of mitochondrial genes and occurrence

of heteroplasmy (e.g. in mussels: Zouros et al., 1992; Skibinski et al., 1994; Wenne and

Skibinski, 1995; see also Birky et al., 1989; Birky, 1995) in the majority of organisms mi-

tochondrial genes are transmitted strictly maternally and all the individuals (both males
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and females) are homoplasmic (Birky et al, 1983; Avise, 1994). We consider the following

situation. Mitochondrial genes are transmitted strictly maternally; thus, we consider only

the female part of the population, haplotypes of males being irrelevant for our consideration.

Mothers produce eggs of the same haplotype (mutations and heteroplasmy are ignored).

There are N females in the population, each of A or Ā haplotype, p being the frequency of

the A haplotype. The ith female transmits ki gametes (eggs), with µk being the mean over

all the females. σ2
k is the variance of the ki’s. We consider non-overlapping generations.

For the ideal population, in which mothers contribute to the next generation binomially,

so that each gamete is equally likely to come from each mother, the conditional variance of

difference between haplotypic frequencies in adjacent generations is

Var(∆p | p) =
p(1− p)

N
(1)

The variance Ne of a real population is the size of the ideal population, which has the

drift variance of the same value as the real population. Hence, the variance Ne is

Ne =
p(1− p)

Var(∆p | p)
(2)

It is shown in the Appendix that

Var(∆p | p) = σ2
k

p(1− p)

µ2
k(N − 1)

(3)
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Substituting Var(∆p | p) into (2) we obtain

Ne =
µk(N − 1)

σ2
k

µk

=
µ2

k(N − 1)

σ2
k

(4)

For a population of constant size (µk = 1) this reduces to

Ne =
N − 1

σ2
k

(5)

When each female contributes binomially to the next generation,

k ∼ Bin(Nt,
1

Nt−1

), (6)

so the variance is

σ2
k = µk(1−

1

Nt−1

) (7)

and Ne becomes µkNt−1 = Nt. For the population of constant size Ne = N . If the whole

next generation originates from a single female, σ2
k = µ2

k(Nt−1 − 1) and Ne becomes 1 as it

should.

As mentioned earlier, Caballero (1994) gives a formula for the variance Ne for n-ploid

population. When solved for n = 1 it is reduced to the following:
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Ne =
N − 1

σ2
k

µk

=
µk(N − 1)

σ2
k

(8)

One can see that this formula differs from (4) in the first term µk (the average number

of progeny), which is squared in our formula and is in the power 1 in (8). Our result seems

quite reasonable as the variance Ne should be related to the number of offspring (see Crow

and Kimura, 1970, p. 361) rather than parents as is in (8). We believe that this difference is

caused by inconsistency in notation in Caballero (1994). He explicitly writes that N (in his

eqs. 26, 27, 28) is the number of individuals in parental generation (though for the case of

a constant population size he considers the distinction between the number of parents and

offspring is irrelevant), while in the formula for the variance of change in gene frequency

(Crow and Morton, 1955; eq. 11) N means the number of progeny. If one substitutes N in

eq.28 (Caballero, 1994) for Nt−1µk and solves this equation for the haploid case (n = 1), one

arrives at our solution (4) of the haploid Ne.

Chesser and Baker (1996) consider effective sizes in spatially subdivided populations for

both uniparentally and diparentally inherited genes. Equation (34) in this paper gives the

loss-of-variation effective size (Ne(L)), which is conceptually equivalent to the inbreeding

effective size for a diploid population, for maternally transmitted genes in an undivided

population:
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Ne(L) =
µk(µkN − 1)

σ2
k + µk(µk − 1)

(9)

For constant size populations (µk = 1) Ne(L) and Ne(V ), derived by us,coincide, but in

other cases they differ.

Let us compare effective sizes of a population (Ne[nuc] and Ne[mt]) for the nuclear and

mitochondrial genes. Let Nf+m be the total number of females and males. According to

Crow and Kimura (1970, p. 362) the variance Ne for nuclear genes for the population of

constant size of a bisexual species is Ne[nuc] = (4Nf+m − 4)/(σ2
k + 2). As shown before,

Ne[mt] = (Nf −1)/σ2
k. With random mating and binomial contributions of individual parents

Ne[nuc] = 2Nf+m and Ne[mt] = Nf . When sex ratio is 1:1, Nf = Nf+m/2 and the ratio

Ne[mt]/Ne[nuc] = 0.25 as is usually stated (Takahata and Maruyama, 1981 and many later

publications).

An interesting case is when equal numbers of progeny are contributed by each female.

σ2
k is zero in this case and Ne[mt] will be infinity. This result is quite reasonable. When σ2

k

is zero, the haplotype frequency in the progeny will be the same as in mothers, as would

have been in the ideal infinite population (with zero drift variance). Interestingly, variance

Ne[nuc] for this case of σ2
k = 0 will be twice the number of breeding individuals, that is very

different from the mitochondrial gene case. Incidentally, the inbreeding Ne for the case of

equal parental contribution is also infinity (Crow and Kimura, 1970; p. 361). This case of
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zero variance of reproductive contribution is instructive in the respect that it clearly shows

that it is not always possible to simply replace 2Ne[nuc] with Ne in adapting for mitochondrial

case the equations derived for nuclear genes as is recommended by Birky et al., 1983 (pp.

516, 518).

Although we derived the formula (4) having in mind the case of mitochondrial genes, the

formula is equally applicable for any case of uniparentally transmitted genes (e.g. maternally

inherited in many plants chloroplast genes, paternally inherited in mammals Y-chromosome

genes) or for haploid populations (e.g. bacterial).
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APPENDIX

Let ki be a number of gametes transmitted by kth female. The frequency of allele A in the

following generation is
∑

A ki/
∑

ki, where
∑

A denotes summation extending through carriers

of A. Nt−1 and NA; t−1 are the census population size (the number of breeding females) and

the number of alleles A (equals the number of carriers of A) at generation (t−1), respectively.
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The frequency change is

∆p =

∑
A ki∑
ki

− p (10)

=

∑
A ki∑
ki

− NA; t−1

Nt−1

(11)

Omitting t−1 subscript in NA; t−1 and Nt−1 for now, and writing Var(∆p) ≡ Var(∆p | p)

Var(∆p|NA) = E{(∆p|NA)2} − (E{∆p|NA})2 (12)

The first term, E{(∆p|NA)2} is

E{(∆p|NA)2} = E


(∑

A ki∑
ki

− NA; t−1

Nt−1

)2
 (13)

= E


(

N
∑

A ki −NA
∑

ki

N2µk

)2
 (14)

=
1

N4µ2
k

E


(
N
∑
A

ki −NA

∑
ki

)2
 (15)

=
1

N4µ2
k

E


(
N
∑
A

ki − (
∑
A

1)µkN

)2
 (16)

=
1

N4µ2
k

E


(
N
∑
A

ki −N
∑
A

µk

)2
 (17)

=
1

N4µ2
k

E

N2

(∑
A

(ki − µk)

)2
 (18)

=
1

N2µ2
k

E


(∑

A

(ki − µk)

)2
 (19)
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=
1

N2µ2
k

E

∑
A

(ki − µk)
2 +

∑
A; i6=j

(ki − µk)(kj − µk)

 (20)

=
1

N2µ2
k

N

N − 1

(
NAσ2

k + NA(NA − 1)(−1)
1

N − 1
σ2

k

)
(21)

=
1

N2µ2
k

N

N − 1
σ2

k

(
NA −

NA(NA − 1)

N − 1

)
(22)

=
σ2

k

µ2
kN(N − 1)2

NA(N −NA) (23)

By a similar argument,

E{∆p|NA} =
1

Nµk

E

{∑
A

(ki − µk)

}
= 0 (24)

Then

Var(∆p) = Var {E(∆p|NA)}+ E {Var(∆p|NA)} (25)

= E {Var(∆p|NA)} (26)

=
σ2

k

µ2
kN(N − 1)2

E {NA(N −NA)} (27)

=
σ2

k

µ2
kN(N − 1)2

N(N − 1)p(1− p) (28)

=
σ2

kp(1− p)

µ2
k(N − 1)

(29)
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