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Abstract

We present a new procedure for combining p-values from a set of L hypothesis tests. Our

procedure is to take the product of only those p-values less than some specified cut-off value and

to evaluate the probability of such a product, or a smaller value, under the overall hypothesis that

all L hypotheses are true. We give an explicit formulation for this p-value, and find by simulation

that it can provide high power for detecting departures from the overall hypothesis. We extend

the procedure to situations when tests are not independent. We present both real and simulated

examples where the method is especially useful. These include exploratory analyses when L is

large, such as genome-wide scans for marker-trait associations and meta-analytic applications that

combine information from published studies, with potential for dealing with the “publication bias”

phenomenon. Once the overall hypothesis is rejected, an adjustment procedure with strong family-

wise error protection is available for smaller subsets of hypotheses, down to the individual tests.

Key words: meta analysis, multiple tests, genome-wide scans, microarrays, Bonferroni.
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1 Introduction

When L hypothesis tests are conducted with the same significance level α, then the probability

of finding at least one significant result among the L is greater than α. The resulting problem

of interpreting the results from multiple tests has been considered many times, [e.g., Hochberg

and Tamhane, 1987]. It is also recognized [e.g., Rosenthal, 1978] that a series of non-significant

results may together suggest significance: “Two 0.06 results are much stronger evidence against

the null than one 0.05.” This situation led Fisher [Fisher, 1932] to his method for combining

significance values, although it is the problem of possibly spurious single significant tests that is of

more concern to us. We have been faced with this situation in different genetic contexts, including

testing for allelic independence at several loci from several samples [Zaykin et al., 1995], and testing

for marker-disease associations at several marker loci [Kaplan and Weir, 1995].

We concentrate here on global tests, or procedures that combine p-values from several tests in

order to provide a p-value for the overall hypothesis that all single hypotheses are true.

We review the methods of Edgington [1972], Fisher [1932], Stouffer et al. [1949], and Wilkinson

[1951] and describe a new procedure, the “truncated product method”, hereafter TPM, that appears

to have good properties, especially when the total number of tests is large. This appears to be of

special interest in the light of recent advances in DNA microarrays and gene chip technologies.

In the language of Hedges and Olkin [1985], the procedures we discuss are termed omnibus or

nonparametric because they depend only on the significance values of individual tests and not on

the form of the underlying data.
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2 Combination methods

We suppose that tests have been conducted for each of L hypotheses Hi, i = 1, 2, . . . , L. For each

test the p-value pi is calculated: if Hi is true, this is the probability of observing a test statistic as

extreme as or more extreme than the observed value in the direction of rejection [Shaffer, 1995].

However, (1 − pi) is also the value of the probability distribution function of the test statistic

and therefore it is uniformly distributed on the interval [0, 1]. This holds for any continuous test

statistic. Moreover, −2 ln pi has a chi-square distribution with two degrees of freedom. This led

Fisher [1932] to note that the statistic

t = −2
L∑

i=1

ln pi = −2 ln(
L∏

i=1

pi)

has a chi-square distribution with 2L degrees of freedom when all L hypotheses are true (denoted by

HT in the sequel). Therefore, the p-value for the hypothesis that all Hi are true is the probability

of a χ2
2L variable being greater or equal to the observed value t. The Fisher combination test is

shown to be asymptotically Bahadur optimal by Pallini [1994].

Edgington [1972] preferred to work with the sum of the p-values, and he gave the probability

of the sum of L uniform [0, 1] variables being less than or equal to S as

S′∑
r=0

(−1)r
(

L

r

)
(S − r)L

L!

where S′ is the largest integer less than S. This probability also serves as the p-value for the

hypothesis HT . This and related distributions were also derived by Feller [1966]. Hedges and Olkin

[1985] pointed out that one large p-value can overwhelm many small p-values with this approach.

For L independent tests, Wilkinson [1951] noted that the number of p-values less than some

quantity τ has a binomial distribution B(L, τ) when HT is true. The probability of finding at least
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k values less than τ is

L∑
i=k

(
L

i

)
τ i(1− τ)L−i

Wilkinson set τ to the single-test significance level α. He used this binomial expansion to note,

for example, that two tests significant at the 5% level in 14 tests does not imply that two events

have occurred where each has a 5% probability, but that one event with a 15% probability has

occurred. If k = 1, the probability becomes [1− (1− τ)L] suggesting that τ = 1− (1−α)1/L for an

overall α-level test. This is the basis of Šidák’s correction [Šidák, 1967]. Any individual test must

be significant at the level τ in order for the overall level to be α.

An alternative procedure [Stouffer et al., 1949] uses normal-transformed p-values. If Φ(x)

denotes the probability distribution function for the standard normal distribution

Φ(x) =
∫ x

−∞

1√
2π

e−z2/2dz

then each pi-value can be transformed to a standard normal score, when the hypothesis is true, by

1− pi = Φ(zi)

zi = Φ−1(1− pi)

and z =
∑

i zi/
√

L is also standard normal. The p-value for hypothesis HT is, therefore,

p = 1− Φ

(
1√
L

L∑
i=1

Φ−1(1− pi)

)

Finally, a recent competitor is Simes’ test [Simes, 1986]. If the L p-values are ordered, then

Pr

{
L⋃
i

(p(i) ≤ iα/L)

}
≤ α

This suggests a test: reject the global null-hypothesis, H0 = {H1, ...,HL}, if p(i) ≤ iα/L for at least

one i. Equivalently, the global p-value is given by min{Lp(i)/i}.
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3 Truncated product method

As a procedure that combines the features of Fisher’s product method and Wilkinson’s truncation

method, we suggest the use of the product W of all those pi values that do not exceed some fixed

value τ :

W =
L∏

i=1

p
I(pi≤τ)
i

where I(·) is the indicator function.

Useful aspects of the TPM test include the following:

1. Experience shows that the ordinary Fisher product test loses power in cases where there are

a few large p-values. This can happen when tests are one-sided, with noncentrality in the

“wrong” direction, or when there are a predominance of near-null effects. By truncating,

these large components are removed, thereby providing more power, much like a “trimmed

mean” gains efficiency in the presence of outliers [Huber, 1977].

2. A natural, although somewhat arbitrary choice for τ is α (commonly 0.05). This allows easy

use of the test in cases where only p-values for “statistically significant” results are given; it

also allows estimation of “file drawer effects” in meta-analysis as shown below.

3. The truncated combination emphasizes smaller p-values, somewhat like the Simes and Šidák

methods. However, Simes and Šidák p-values can never be smaller than p(1), the smallest

p-value, whereas the TPM p-value will be smaller than p(1) when there are several small

and reinforcing p-values in the set. In genome scans, this case is likely to occur in a local

neighborhood of a susceptibility gene.
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4. One can incorporate weights into the analysis as in Good [1955], as W =
∏L

i=1 p
wiI(pi≤τ)
i ,

thereby allowing studies or tests with more precision to play a larger role.

5. Isolation of individual significances is possible (and computationally feasible even for large

numbers of tests as we show in the appendix), through the closure principle of Marcus et al,

[1976] when using the TPM test.

3.1 Independence case

First we consider the case when all p-values are independent. Under the null hypothesis HT , the

distribution of W for w < 1 can be evaluated by conditioning on the number, k, of the pi’s less

than τ :

Pr(W ≤ w) =
L∑

k=1

Pr(W ≤ w | k) Pr(k)

=
L∑

k=1

(
L

k

)
(1− τ)L−k

(
w

k−1∑
s=0

(k ln τ − lnw)s

s!
I(w ≤ τk) + τkI(w > τk)

)
(1)

When L is large (> 1,000 tests, assuming double precision calculations), the probability in (1)

should be computed through a Monte Carlo algorithm described in the next section. The deriva-

tion of equation (1) is given in Appendix 1. At one extreme, setting τ = min p results in Šidák’s

correction. At the other extreme, when τ = 1, equation (1) provides Fisher’s combined p-value.

Thus, the method we describe here is “intermediate” between combination and individual adjust-

ment techniques. Note that setting τ = 1 provides a way of calculating Fisher’s combined p-value

directly. Instead of looking up the cumulative probability from the tail of a chi-square distribution,

it can be obtained as

Pr(W ≤ w) = w
L−1∑
s=0

(− lnw)s

s!
(2)
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C++ code for calculating the TPM p-value is available at ftp://statgen.ncsu.edu/pub/zaykin/tpm.

An executable for a specific OS can be requested from zaykin@statgen.ncsu.edu.

3.2 Correlated tests

The Fisher combination test is somewhat motivated by the independence case; however, Pallini

[1994] notes that the simple combination can be also consider optimal for correlated tests. The

problem remains as to finding the critical value in the presence of correlations. We consider sev-

eral possibilities for dealing with non-independent tests. The first method exploits the fact that

correlation is approximately invariant under monotone transformations:

Corr {g(Xi), g(Xj)} ≈ [g
′
(µ)]2Cov(Xi, Xj)√

[g′(µ)]4Var(Xi)Var(Xj)

= Corr{Xi, Xj} (3)

Let Σ be a non-degenerate correlation matrix for the vector of p-values, R. If Σ is positive definite,

then there exists a matrix C (Cholesky factor), such that Σ = CCT . Let Z = Φ−1(1−R∗) for some

random vector R∗ with Uniform(0,1) independent components. Then Var(C Z) = C Var(Z) CT =

C I CT = Σ and C Z has a multivariate normal distribution with the mean zero and the covariance

matrix Σ. We can relate vectors R∗ and R as follows:

R = 1− Φ{C Φ−1(1−R∗)} (4)

and

R∗ = 1− Φ{C−1Φ−1(1−R)} (5)

and then apply equation 1 to values in R∗. Thus, the correlated p-values in R are transformed to

uncorrelated values in R∗ and then the method derived for the independent case is applied. An
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assumption of this method is that the correlation completely describes the dependence between

components of R, as in the case when the test statistics jointly follow a multivariate normal

distribution. As an example, consider a vector of two p-values with a known correlation, r. Since

the Cholesky factor is

C =

 1 0

r
√

1− r2

 ,

the transformation would modify the vector in the following way:[
p1, 1− Φ

(
Φ−1(1− p2)− rΦ−1(1− p1)√

1− r2

)]

If r = 0, the vector is just [p1, p2].

A second method is based on the following Monte Carlo algorithm.

1 Decide on the value of the truncation point, τ .

2 Calculate W0 =
∏L

i p
I(pi≤τ)
i for a sample of pi’s (L observed p-values). Set A = 0.

2a Generate L independent uniform random numbers, u∗1, ..., u
∗
L, on (0, 1), i.e. form the

vector R∗, then transform it to R with components u1, ..., uL, e.g. by equation 4.

2b Calculate W =
∏L

i u
I(ui≤τ)
i .

2c If W ≤ W0, increment A by one.

3 Repeat steps (2a)-(2c) B times.

4 The combined p-value is A/B.

In practice, sums of − ln(pi) should be calculated in order to avoid numerical underflows. This

method has the advantage that L can be very large. It can also be easily modified to incorporate
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combining p-values in a weighted fashion, by assigning weights, wi, as W0 =
∏L

i p
wiI(pi≤τ)
i and

W =
∏L

i u
wiI(ui≤τ)
i .

Both methods require that the correlation structure is known. In many cases it will be unknown

and have to be estimated from the data. We will give such an example of calculating Σ̂ from

marker-disease association tests with a dense map of genetic markers. The results obtained with

the estimated covariance structure have to be viewed with caution. This problem is similar to the

one of the generalized least squares technique, when the model is being pre-multiplied with the

Cholesky factor obtained from Σ̂ [Rawlings, 1988].

A third approach is to estimate the distribution in W through resampling, when appropriate, as

described in general terms by Westfall and Young [1993]. Churchill and Doerge [1994], and Doerge

and Churchill [1996], describe permutation tests for quantitative trait loci. These test involve

permuting the quantitative trait vector and re-evaluating the min (p-value) statistic for every

permutation, then taking the combined p-value to be the proportion of permutations yielding a

statistic smaller than that which was observed in the original sample. Such an approach can be

applied with the truncated product test as well, and easily accommodates weights, for which analytic

solutions are less tractable. Weights are assigned the same way as with the second approach.

4 Power considerations

We evaluated procedures described above on the basis of power to detect departures from null

hypotheses concerning the mean of a normal distribution, H0 : µ = µ0, when the variance σ2 is

known. The alternative hypotheses are HA : µ = µA > µ0. We transform the mean x̄ of a sample
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of size n to give the usual z test statistic

z =
√

n(x̄− µ0)
σ

Under H0, z has the standard normal distribution, and under HA it is distributed N(γ, 1) where

γ =
√

n(µA − µ0)/σ.

When H0 is true, the p-values could be written as p0:

p0 = Pr(Z ≥ z) = 1− Φ(z)

z = Φ−1(1− p0)

where Z is the standard normal variable. The values of p0 are distributed uniformly on [0, 1].

When HA is true the p-value is

pA = Pr(Z ≥ z − γ)

= 1− Φ
(
Φ−1(1− p0)− γ

)

Therefore, if u is drawn randomly from the uniform distribution on [0,1], p-values under the null

and alternative hypotheses can be calculated as (1 − u) and Φ
(
Φ−1(1− u) + γ

)
. This provides

us with a means for generating p-values under each hypothesis rather than generating samples,

calculating test statistics and then determining p-values.

5 Results

In the first place we simulated the case where all L hypotheses were true, and rejected the overall

hypothesis HT that all are true when the overall p-value was less than 0.05.
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In Table I we show the proportion of 100,000 simulations that resulted in rejection, for several

values of τ . TPM gave values consistent with the nominal 0.05 value.

For non-independent tests, we assumed that the test statistic has a multivariate normal distri-

bution with the following variance-covariance matrix:

Σ =



1 ...

... 1 e−|i−j|ξij

e−|i−j|ξij 1 ...

... 1


Σ approximates the exponential decay in the correlation expected among marker loci in marker-

trait association studies [e.g. Lander and Botstein, 1989]. ξij were set to Uniform(1/4, 3/4), so

that the correlation between adjacent p-values ranged from 47% to 78%. We transformed vectors

of correlated p-values as in (5) before calculating combined p-values. The results, averaged over

10,000 simulations are shown in Table II. They confirm that the size of the tests remain consistent

with the nominal 0.05 value when the correlation is taken into account.

We then allowed hA of L = 25 hypotheses to be false, but with the same value of γ so that the

tests of each of these hA hypotheses has the same power. We set γ = 1.64 so that these powers

had the nominal value of β =0.50. All other L − hA hypotheses were set to be true. The p-value

for the overall hypothesis HT was then calculated by the methods of Edgington, Fisher, Stouffer,

Wilkinson (with τ = 0.05), Simes, and by the TPM with τ = 0.05. Empirical powers based on

10,000 simulations are shown in Table III. Fisher’s procedure and the TPM had substantially the

same performance, although the TPM performed better when few hypotheses are false and the

12



other methods, except Simes, did not perform well for low numbers of false hypotheses. Simes

method has the highest power in the situation when only a single hypothesis is false. In this case,

Simes’ method provides power at least as good as Bonferroni-adjusted minimum p-value (Tippett’s

procedure). When all hypotheses are false (L = 25, β = 0.25), procedures with truncation (TPM,

Wilkinson’s, and Simes’) perform not as well as other methods, but TPM has the best power among

the three.

The alternative hypotheses hA are all one sided, but in Table IV we allow some tests to have

positive γ and some negative γ. With this combination of different directions of departure from the

null, it is clear that the TPM performs the best. For some values of hA, Wilkinson’s and Simes’

procedures perform better than Fisher’s procedure, but the other methods do not perform well.

When all hypotheses are false (L = 25, β = 0.25), TPM still has the highest power.

Although the power of the TPM is satisfactory in comparison with the other combination

procedures, it is not our intention to recommend its usage for this reason. The more important

point is that the alternative hypothesis of interest is different (with the exception of Wilkinson’s

and Simes’ methods). When applying the TPM, rejection of the null hypothesis leads one to

declare that there is at least one false hypothesis among the ones resulting in p-values ≤ τ . Other

combination procedures, except for Wilkinson’s, state that there is at least one false hypothesis

among all L hypotheses tested. Rice [1990] discussed further points distinguishing multiplicative

and additive combination methods. The distinction becomes important when L is large, e.g. in

whole genome scans or mRNA expression studies using microarrays. We recommend that in these

cases the value of τ should be no larger than the significance level.

In the following simulations (Table V) we set L = 25, 000 and τ = 0.05. Power values for Simes’
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and Fisher’s methods are lower, however we stress that it is not our intention to compare the power

values of TPM and Simes’ to Fisher’s, as they refer to the different subsets of hypotheses.

As the first example, we simulated a 143 cM map with a 2610 bi-allelic markers (SNP’s) and

a single bi-allelic disease gene with the penetrance values 0.56, 0.23, 0.05 for disease genotypes

AA, Aa, aa. A founder population of 20 people expanded to 50,000 and was allowed to drift

for 200 generations. The recombination process between the markers and the disease gene was

modeled according to Haldane’s mapping function. The growth rate was 1.1. The population

disease prevalence was 0.06. We sampled 1500 people (750 affected + 750 unaffected) and at

each marker position performed 2×2 Fisher’s exact tests [Fisher, 1932] for association of marker

alleles with the disease. We plotted the − ln p against marker map position, together with the

− ln of 1% threshold, Bonferroni-adjusted by the total number of tests (0.01/2610). For similar

plots some researchers [e.g. Juo et al, 1997] require that flanking markers around significant tests

must also show some significance. Goldin et al. [1999] suggested that p-values should be averaged

across certain genetic distances. Our approach is to take into account the information from all

neighboring markers up to the distance to which the correlation extends. In our simulations the

estimated correlation extended, on average, up to 5 markers in each direction, corresponding to a

distance about of 0.5 cM. Figure 1 is a plot of raw -ln(p-values). The disease gene was between

markers 1823 and 1824. Figure 2 is a graph of -ln(p-values), combined by TPM in sliding windows

of 11 markers, with τ=0.05. Each time the window moved a marker ahead, the 11 probabilities

were combined by (1) after applying the transformation given in (5). Because of the large number

of markers, there is enough information to estimate correlations with reasonable precision. The

correlation matrix, as a function of distance, was estimated from the data with acf function of
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S-Plus (S-PLUS 3.4, MathSoft Inc.), using the information from all 2610 markers. Figure 3 is a

similar graph, but with τ=1. The graphs show that the combined p-value reveals the peak around

the true location, while keeping false peaks below the Bonferroni-adjusted significance threshold

[see Terwilliger et al., [1997] and Knapp, [1998] for discussion of similar phenomena]. The 0.05

value of τ resulted in a higher peak in these simulations. This happened because of the unequal

informativeness of the markers, due to variations in allele frequencies and linkage disequilibria with

the disease gene.

As a final example we present an application of the method of combining p-values across genetic

linkage studies. The web-based database at http://cooke.gsf.de/asthmagen/main.cfm [Wjst and

Immervoll, 1998] reports 644 linkage results for chromosome 6 for asthma related phenotypes.

While there are varying degrees of information in the studies, and combination of p-values should

therefore incorporate weights, we perform the unweighted analysis to illustrate the precise solution

(1). 55 of the p-values are smaller than 0.05 and many of remaining p-values are reported as

“non-significant”, without indicating the actual values. Note that this alone would prevent one

from utilizing methods that require values from all L tests. Taking into account the possibility of

the “publication bias”, when only successful findings are reported, the value of L=644 is a lower

estimate of the number of tests actually performed. None of the p-values would remain significant

after adjusting by a false discovery rate controlling procedure by Benjamini and Hochberg [1995],

or family-wise error rate controlling procedures, such as Bonferroni, or more powerful method of

Hochberg [1988]. However, the TPM (τ = 0.05) yields the combined p-value of 0.00005, giving

a strong indication of genetic linkage. The nature of the method also allows us to provide the

maximum possible value of L for the result to remain significant. It is equal to 904 in this example.
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Thus, the number of non-reported studies with negative results can be as large as 904−644 = 260 for

the combined p-value to remain below 5% level. There have been models developed for estimating

the number of non-reports [Givens et al., 1997, Gleser and Olkin, 1996].

6 Discussion

Debate over the use of p-values in summarizing the results of hypothesis tests continues [Goodman,

1999] but the values are routinely calculated and reported in many disciplines. Many genetic

studies lead to p-values from tests on multiple loci in multiple samples and it is necessary to take

this multiplicity into account when drawing inferences. Among the approaches that have been

considered in the past it appears that Fisher’s method, of taking minus twice the logarithm of the

product of a set of L p-values and recognizing that this quantity is distributed as chi-square with

2L degrees of freedom when all L hypotheses are true, is a good way of providing an overall p-value.

We have suggested here an alternative procedure, which also takes into account the size of L p-

values but uses only the small ones. By “small” we mean a conventional values such as 0.05. Instead

of asking whether the set of L tests contains any evidence for departures from all L hypotheses, our

procedure can be used to ask whether any of the significant test statistics are indeed significant. By

focusing on only the set of small p-values we appear to have increased the overall power, especially

in situations where a small subset of the hypotheses are false.
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7 Appendix 1: Distribution of W

When HT is true and τ < 1, the number of small p-values (k) has a binomial distribution, and pi’s

are observations from the uniform (0, 1) distribution, truncated at τ (i.e. the distribution of pi’s is

uniform on (0, τ)).

Given k, the conditional distribution of the product (W ) can be calculated directly. Let

X1, ..., Xk be independent uniform (0, τ) random variables. Consider the transformation:

Z1 = X1

Z2 = X1X2

...

Zk = X1X2...Xk

with inverse

X1 = Z1

X2 = Z2/Z1

...

Xk = Zk/Zk−1

The Jacobian of the transformation (J) has the following structure:

∂xi/∂zj =



1 i = j = 1

1/zi−1 i = j;≥ 1

−zi/z2
i−1 j = i− 1

0 otherwise
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Therefore

| J |=
k−1∏
i=1

1/zi

and the joint density is

f(Z) =
1

τk
∏k−1

i=1 zi

Integrating out z1 through zk−1 from the joint density gives the conditional probability, P (W ≤

w | k):

Pr(W ≤ w | k) =
∫ w

0

[∫ τk

t

∫ τk

zk−1

...

∫ τk

z2

∏k−1
i=1 dzi

τk
∏k−1

i=1 zi

]
dt

=
∫ w

0

(ln τk − ln t)k−1

(k − 1)! τk
dt (6)

Then the unconditional distribution is found as follows:

Pr(W ≤ w) =
∫ w

0

L∑
k=1

(ln τk − ln t)k−1

(k − 1)! τk

× I(ln τk > ln t)

(
L

k

)
τk(1− τ)L−kdt (7)

The probability calculated in (7) corresponds to the combined p-value. After τk in (7) is canceled,

this probability is

Pr(W ≤ w) =
∫ w

0

L∑
k=1

(k ln τ − ln t)k−1

(k − 1)!

× I(τk > t)

(
L

k

)
(1− τ)L−kdt (8)

or equivalently

Pr(W ≤ w) =
L∑

k=1

(
L

k

)
(1− τ)L−k

(k − 1)!

[∫ w

0
(k ln τ − ln t)k−1

× I(τk > t)dt
]

(9)
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Provided τk > t, the integral in (9), which we denote by Ik is:

Ik =
∫ w

0
(ln τk − ln t)k−1dt (10)

= (ln τk − ln t)k−1t|w0

−
∫ w

0
td[(ln τk − ln t)k−1] (11)

= w(ln τk − lnw)k−1

− (k − 1)
∫ w

0
t(−1

t
)(ln τk − ln t)k−2dt (12)

= (k − 1)Ik−1 + wA(τ, k, w)k−1. (13)

where A(τ, k, w) = k ln τ − lnw. Since I1 = w, then

Ik = (k − 1)!

[
w + w

k−1∑
s=1

A(τ, k, w)s

s!

]
(14)

= w(k − 1)!
k−1∑
s=0

A(τ, k, w)s

s!
(15)

Therefore,

Pr(W ≤ w) = w
L∑

k=1

(
L

k

)
(1− τ)L−k

(k − 1)!
(k − 1)!

k−1∑
s=0

A(τ, k, w)s

s!
(16)

= w
L∑

k=1

(
L

k

)
(1− τ)L−k

k−1∑
s=0

A(τ, k, w)s

s!
(17)

= w
L∑

k=1

k−1∑
s=0

(
L

k

)
(1− τ)L−k A(τ, k, w)s

s!
(18)

8 Appendix 2: Closed testing with Truncated Fisher Test

Adjustments for subsets of hypotheses and individual adjustments are available through the ap-

plication of the closure principle of Marcus et al. (1976). Generally, the procedure considers all

possible combination hypotheses obtained via the intersection of the set of individual hypotheses of
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interest. If an individual hypothesis and all intersections that contain it as a component are rejected

by an appropriate α-level test, then the closure principle states that the given hypothesis can be

also rejected, at the level α. The closure procedure controls the family-wise error rate (FWER)

strongly, meaning that FWER ≤ α regardless of which subset of null hypotheses happens to be

true (Hochberg and Tamhane, 1987). The total number of combination hypotheses (Nh) is

Nh =
L∑

i=1

(
L

i

)
= 2L − 1 (19)

which grows quickly with L and often limits applicability of the method.

Fortunately, this is not the case for the TPM test. Noting that (1) is an increasing function

of L and a decreasing function of W , we see that, among all intersections of a given size s (where

s ≤ L) that include Hi, only the combination that includes Hi and the remaining s − 1 largest

p-values needs to be tested. Thus, significance for any given hypothesis can be determined using

L tests; and when all L component tests are considered, the maximum number of evaluations is

L2. However, many of these evaluations are redundant, and in practice the number is less than

L2. In some cases, e.g., with the Šidák combined tests, the number of evaluations is as small as

L. To illustrate this argument, consider the case when τ = 1. Then for the ordered set of pj ’s

(j = 1, ..., L) the adjusting procedure for any subset of p-values, Pi, such that p(i) is the largest

p-value in the set, is as follows. Compute (2) for most stringent subsets:

{Pi, p(L)}

{Pi, p(L), p(L−1)}

{Pi, p(L), p(L−1), p(L−2)}

...
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{Pi, p(L), p(L−1), p(L−2), ..., p(i+1)}

The adjusted p-value for the subset Pi is given by the maximum of these values. Many subsets,

such as, for example, {Pi, p(L−1)} do not need to be considered, because they will yield p-values

smaller than the one for {Pi, p(L)}.
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Table I Power levels for the TPM when all L hypotheses are true.

L

Truncation point 2 3 5 10 25 50

0.05 0.04910 0.05001 0.04981 0.04992 0.04991 0.05054

0.10 0.04978 0.05070 0.04955 0.05008 0.05016 0.04946

0.25 0.05002 0.04983 0.04942 0.05056 0.05070 0.04958

0.50 0.04886 0.05064 0.05045 0.04990 0.04959 0.04964

1.00 0.04996 0.04936 0.04996 0.05010 0.04996 0.04972
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Table II Power levels for the TPM when L = 25 hypotheses are true and tests are correlated

(10,000 simulations).

Truncation point Ignoring correlation Accounting for correlation

0.05 0.100 0.046

0.50 0.154 0.051

1.00 0.155 0.048
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Table III Power levels when hA of L = 25 hypotheses are false and L − hA are true (10,000

simulations, β = 50% for L = 1−−6 and β = 20% for L = 25).

hA

Method 1 2 3 4 5 6 25

Edgington 0.077 0.124 0.186 0.266 0.361 0.470 0.987

Fisher 0.119 0.229 0.321 0.502 0.678 0.793 0.981

TPM, τ = 0.05 0.158 0.265 0.401 0.538 0.653 0.774 0.809

Stouffer 0.091 0.159 0.256 0.373 0.502 0.628 0.991

Wilkinson, τ = 0.05 0.075 0.137 0.234 0.355 0.482 0.604 0.759

Simes 0.177 0.224 0.349 0.428 0.486 0.538 0.227
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Table IV Power levels when hA of L = 25 hypotheses are false in each

direction and L − 2hA are true (10,000 simulations, β = 60% for L = 1 − −6 and β = 25% for

L = 25).

hA

Method 1 3 5 7 9 11 25

Edgington 0.000 0.000 0.001 0.023 0.227 0.709 0.015

Fisher 0.049 0.307 0.709 0.932 0.991 0.999 0.303

TPM, τ = 0.05 0.389 0.725 0.903 0.972 0.993 0.999 0.473

Stouffer 0.000 0.000 0.008 0.099 0.450 0.848 0.032

Wilkinson, τ = 0.05 0.147 0.492 0.787 0.931 0.979 0.994 0.363

Simes 0.456 0.311 0.753 0.841 0.897 0.938 0.317
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Table V Power levels when hA of L = 25, 000 hypotheses are false (β = 70%) and L− hA are

true (10,000 simulations).

hA

Method 50 75 100 125 150 175

TPM, τ = 0.05 0.389 0.647 0.853 0.956 0.989 0.999

Fisher 0.305 0.524 0.741 0.893 0.963 0.991

Simes 0.361 0.480 0.576 0.665 0.737 0.801
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Figure 1: Plot of − ln p
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Figure 2: Plot of − ln p combined in a window, τ = 0.05
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Figure 3: Plot of − ln p combined in a window, τ = 1
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