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Genetic mapping based on linkage analysis
relies on the principle that alleles at loci
close together on a chromosome tend to be
inherited together, as the probability of a
recombination event occurring between
them is related to the distance between
them. Unlinked linked loci segregate inde-
pendently. To estimate distance between
loci, recombination events between them are
counted as alleles are transmitted through
pedigrees. An unknown gene affecting the
trait of interest is mapped by discovering
marker loci whose alleles are segregating with
the trait of interest.

Association-based mapping relies on a simi-
lar principle, although with a different scope.
These methods measure the degree to which
alleles at a marker locus are associated with the
trait of interest at a population level. The
degree to which this occurs depends on the
strength of linkage disequilibrium (LD)
between the marker and the locus that affects
the trait. If locus A has alleles A and a and
locus B has alleles B and b, LD between alleles
A and B (DAB) can be written as:

(1) DAB = PAB - PAPB

Here, PA is the probability of receiving an A
allele (PB for the B allele) and PAB is the proba-
bility of receiving both an A and a B allele
together from one parent. In other words, this
quantity measures the difference between the
rate alleles at different loci are actually inher-
ited together versus the rate they would be

inherited together just by chance. In this case
of two alleles per locus, there are four LD
terms (one for each pair of alleles), but:

DAB = -DAb = -DaB = Dab.
A common misperception about LD is that it

refers to both linkage and LD. This has, unfor-
tunately, been propagated in the recent human
association mapping literature, leading to some
inconsistency and confusion. The term was
originally defined in the field of population
genetics as far back as the early 1960s [1], taking
on a form equivalent to EQUATION 1. By exam-
ining this equation (and other equations used
to describe LD), it is clear that values regarding
physical linkage, such as recombination rate,
are absent. It is desirable to maintain the defini-
tion of LD in terms of a quantifiable statistical
measure for which an explicit equation can be
written. As it is not clear how this can be
achieved in a general manner if physical linkage
is also included in the measure, we maintain
the traditional definition. This is consistent
with current literature discussing measures [2]

or estimates of LD [3]. It is also consistent with
some of the earlier work on statistical tests of
both linkage and LD [4].

We note that the term ‘association’ is often
used interchangeably with or in place of the
term ‘LD’. Unfortunately, the term association
can be ambiguous. It may refer to association
between alleles at two loci (implying not only
LD, but possibly other higher-order measures
as well) or it may refer to association between
the marker and a phenotype (which may or
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may not involve LD along with other factors). In this paper we
attempt to be consistent and unambiguous, using the term asso-
ciation only when we mean marker-phenotype association and
LD when we mean the specific quantity defined in EQUATION 1.

Another common misperception about LD is that it can be
created by physical linkage. LD is actually created by evolution-
ary forces, such as mutation, migration, population admixture
and founder effects and can exist between loci on different
chromosomes. Once LD is created, recombination between loci
does cause it to decay over time. Hence, once it has been cre-
ated, LD tends to be maintained in the presence of tight link-
age. If  D0  is the original amount of LD in a population, after
G generations of random mating, the current level of LD is
expected to be:

(2) DG
   = D0

   (1 – θ)G

Here, θ is the recombination rate between the two loci. There-
fore, the larger the recombination rate, the faster the decay. By
looking at a population at generation G, it is expected that loci
that exhibit stronger LD are closer together than those with
weaker LD. This is the basis of association mapping. Following
the LD pattern along a map should indicate the closest locus to
the one being compared.

While in theory this is a reasonable strategy, in reality there are
a number of caveats. Foremost is the fact that this strategy relies
upon a reasonably restricted population history. Specifically, an
event must have occurred to create an initial level of LD in the
population, but since that event sufficient time has passed so that
LD has decayed with recombination. In addition, no ongoing
events are occurring in the population to maintain or create LD
anew. A recent admixture event can create genome-wide LD,
which is not conducive to inferring proximity between loci until
many generations of random mating have occurred. If the
admixture is ongoing, genome-wide LD patterns may continue
to exist. In addition, mutational events that give rise to new alle-
les can occur at very different times for different loci. LD may
have completely decayed between two adjacent loci, yet be newly
created between these and a more distance locus. Selection may
also maintain LD over time between distant loci.

Even if population history is such that LD is expected to
behave as desired overall (EQUATION 2), large variations due to the
stochastic nature of population history exist for any population
of finite size [5,6]. Therefore, it is not unlikely that LD may differ
substantially from its expected value, even in an ideal population.
Of course, LD generally must be estimated from a population
sample, so that these estimates also include sampling error.

Another point is that LD – as written in EQUATION 1 – is
bounded by the allele frequencies at the loci involved. The maxi-
mum amount of LD possible between a locus and its close neigh-
bor may be much smaller than that between the locus and a more
distant site. In this case, it is quite possible that the more distant
loci exhibit larger values of LD than the closer pair.

In spite of these potential problems, there is a lot of optimism
regarding the use of LD in mapping genes and many methods
have been developed for this purpose. Some of these methods

have addressed the problems inherrent in using LD alone as a
measure of distance by designing tests sensitive to recombina-
tion in addition to LD. Others attempt to model population
structure in their tests, so that the tests are less sensitive to some
of the problems that may arise.

Measures of LD
The difficulty in estimating LD is that usually only geno-
types, not haplotypes, are available for examination, yet the
haplotype frequency, PAB, is necessary in order to estimate
LD. One approach to get around this problem is based on the
expectation-maximization (EM) algorithm. This method
finds the haplotype frequencies that maximize the sample
likelihood. Consider the following simple example. Suppose
we observe a sample of six individuals typed at two diallelic
markers. The first three individuals are double homozygotes,
AA/BB, contributing six gametes of the type AB to the sample
counts. The next two are aa/bb, contributing four gametes of
the type ab. The last individual, however, is a double hetero-
zygote, Aa/Bb and there are two possible pairs of haplotypes
this individual may have inherited; AB with ab, or Ab with
aB. Taking into account the first part of the sample, the EM
algorithm assigns an extremely low probability to the second
(Ab with aB) arrangement because these types of gametes have
not been observed among unambiguous individuals. To make
such calculations, it is necessary to assume Hardy-Weinberg
equilibrium (HWE), which implies that two-marker geno-
types do not deviate from the products of haplotype frequen-
cies. Although the EM algorithm is an iterative technique,
Weir and Cockerham showed that two-marker haplotype fre-
quencies can be obtained by looking at the final iteration,
when the next and the previous likelihoods are evaluated at
the same frequencies [7]. The resulting equation can be solved
explicitly, revealing that there are biologically plausible situa-
tions when no real-valued roots exist. This argues against
blind application of the EM algorithm. Weir and Cockerham
further suggest routine use of a composite genotypic disequi-
librium method that does not assume HWE and that provides
an unbiased estimate of LD under HWE.

Once an estimate of DAB is obtained, there is a problem of
its dependency on the allele frequencies, PA and PB. Many
measures that attempt to standardize LD have been pro-
posed. Devlin and Risch give an overview of five of these
measures in the context of fine mapping [2]: the correlation
coefficient ∆, Lewontin’s D´, the robust formulation of the
population attributable risk δ, Yule’s Q and Kaplan and
Weir’s proportional difference d under the assumption of ini-
tial complete disequilibrium between disease and marker
loci, concluding that δ is the superior measure followed
closely by D´. Guo confirmed these findings by calculating
expected values of these measures [8], in contrast to the simu-
lation approach of Devlin and Risch [2]. Morton et al. derive
a measure of LD on a basis of population genetics argument
[9]. Their measure, ρ, arises as the association probability and
is algebraically equivalent to |D´|.

AB AB

AB
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Certainly, the ranking of the measures reflects the specific goal of
relating LD with the recombination probability. A different ques-
tion, such as the optimal density of the markers, may result in a
different ranking. Here ∆ may score well, as it is the most related to
the χ2 statistic of the single-marker association test.

LD as a tool for mapping
As mentioned above, to estimate LD directly, it is necessary to
understand something about both loci being examined (such as
haplotype and allele frequencies). When one of the loci of
interest is an unknown gene that we would like to map, alleles
or genotypes at that gene are generally not available for exami-
nation. In this case, it is still expected that LD can be useful for
indicating proximity between the putative gene and the marker
locus being examined. However, the degree of LD between the
gene and a marker must be determined indirectly. In associa-
tion mapping, this is done by substituting phenotypes for geno-
types at the gene. Instead of estimating correlations between
alleles at both loci, relationships between the marker alleles and
the phenotype are examined.

Examining LD indirectly by use of substituting phenotype for
genotypes in this way has consequences for mapping. In doing
this, the manner in which the gene acts on phenotype becomes
confounded with actual LD [10,11]. This is intuitively obvious by
considering the size of effect the gene has; genes with large
effects on the phenotype should be much easier to locate than
those with weak effects. This confounding of genetic effects and
LD can create some unexpected patterns in marker-phenotype
associations, which can cause added difficulties in association
mapping studies [10,11].

Case-control tests for discrete traits
A very straightforward and popular method for detecting
marker-trait associations for discrete traits – those in which an
individual can be classified as either expressing the trait or not
expressing the trait – is the case-control test. A common dis-
crete phenotype of interest is whether or not an individual is
affected with a disease under study (affected individuals are the
cases, unaffected individuals are the controls). In the case-con-
trol test, individuals from both phenotypic categories are sam-
pled in somewhat similar proportions. They are then geno-
typed for the markers or candidate loci of interest. Allele or
genotype frequencies from the two groups are then compared
to see if they differ.

Case-control tests are sensitive to overall population LD
between the marker and a locus affecting the trait and to the
effects of the gene. As was previously discussed, LD can exist in
a population between loci that are quite far apart or even on dif-
ferent chromosomes. Due to this, strong marker-trait associa-
tion is not necessarily evidence for proximity between the
marker and a gene affecting the phenotype. In addition, it is
possible to detect association even if there is no genetic compo-
nent to the phenotype. This can occur when heterogeneity
within the population exists. If the population to be sampled
consists of several subpopulations and the prevalence of the trait

in question differs between these subpopulations, so-called ‘spu-
rious associations’ may be detected. In this case, individuals
from the subpopulation with the higher prevalence of the trait
are more likely to be selected to be cases, whereas subpopula-
tions with lower prevalences are preferentially selected to be con-
trols. If marker allele frequencies also happen to differ between
subpopulations, these differences will be seen between the cases
and controls. Different prevalences of the phenotype among
subpopulations can result from nongenetic environmental fac-
tors, so that evidence of marker-phenotype association does not
necessarily imply LD, let alone proximity.

Case-control tests for quantititive traits
Often the phenotype of interest in a mapping study is quanti-
tative in nature. Without seperating individuals into discrete
categories, the usual case-control test cannot be performed.
Instead, analysis of variance (ANOVA) can be performed, with
phenotype as the dependent variable and genotypes as the
independent variables [12]. Other variables of interest, such as
race, sex or age can also be included in the model. Since the
number of genotypes at a locus is a function of the number of
alleles squared, as the number of alleles grows, the number of
genotypes becomes very large. This could lead to a problem
with sparse data. Page and Amos discuss an allele-based
ANOVA test, along with proposing various sampling strategies
to try to increase power [13]. These sampling strategies involve
genotyping individuals only from the top and bottom tails of
the phenotype distribution. They compare the different
ANOVA methods to one another and to various transmission/
disequilibrium tests (TDT) [14]. Nielsen and Weir discuss
regression of phenotype on genotype and ANOVA in the con-
text of a general genetic model [10].

TDT for discrete traits
To get around the problem of spurious associations that can arise
when using case-control tests, methods using family-based controls
have been proposed. The most popular of these are the TDT-type
tests. These methods are sensitive to non-zero LD and physical
linkage between a marker and a gene affecting susceptibility. The
original TDT was proposed by Spielman et al. for mapping disease
susceptibility loci [4]. In this test, affected individuals and their par-
ents are sampled and genotyped. By selecting affected offspring
only, susceptibility alleles at the gene should be enriched among
the sample of offspring. If there is LD between the gene and the
marker in the parent generation, certain marker/susceptibility hap-
lotypes will be more common than expected by chance. With no
free recombination to separate these alleles as haplotypes are trans-
mitted from parents to affected offspring, the marker alleles in LD
with the susceptibility alleles will be transmitted more frequently to
the affected offspring. The TDT assesses the transmission rates in
the sample versus what would be expected by chance. Since
homozygous parents can only transmit one allele type, these par-
ents do not add to the power of the test and in most TDT, are not
used. Spielman and Ewens extended the test to consider multiple
alleles at the marker [15].
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The TDT was originally proposed as a test of linkage in the
presence of association; that is, if there is evidence that the phe-
notype is correlated with certain marker alleles, the TDT can be
used to test if there is also linkage in the genetic region. In this
case, the TDT can be performed using all affected offspring in a
nuclear family. However, if there is linkage between the marker
and a gene affecting phenotype, performing the TDT with mul-
tiple offspring as a test of LD is not valid. This is because in the
presence of linkage, transmissions to siblings are not independ-
ent. As a test of LD in the presence of linkage or as a test for
linkage and LD, only one affected offspring per nuclear family
can be used. As this leads to a loss of information if multiple off-
spring are available, Martin et al. proposed a valid test of linkage
and LD using all affected offspring in a nuclear family [16].

As an allele-based test, the TDT is sensitive mainly to addi-
tive genetic effects [10]. Schaid proposed a series of tests based
on log-linear models that are genotype-based tests [17,18]. While
these tests have more degrees of freedom than the allele-based
tests, they are sensitive to the full genetic effect of the locus.
Depending on how the gene acts to affect phenotype, the trade-
off between degrees of freedom and sensitivity to nonadditive
effects may be advantageous.

TDT using sib data
While the TDT-type tests have the advantage of being insensi-
tive to population structure, they do require parents of affected
individuals to be collected. For some situations, such as in late-
onset diseases, it may be difficult or impossible to collect par-
ents of affected individuals. Several tests have been proposed to
avoid this problem, using discordant sibling pairs – pairs com-
posed of one affected and one unaffected sibling – in place of
parental data. In these tests, the number of alleles seen in the
marker genotype of the affected sibling is contrasted to the
number seen in the unaffected sibling. The S-TDT calculates
the mean and variance of the given marker allele for each fam-
ily, then sums over families to get an overall mean and variance
[19]. These values are then combined in a test statistic that is
approximately normally distributed. Spielman and Ewens show
how this test can be combined with the usual TDT if both sib-
ships and trios are available [4,19]. Boehnke and Langefeld pro-
pose a similar test, in which allele counts among affected and
unaffected siblings are recorded in a 2xK contingency table
(where K is the number of alleles at the marker) and a homoge-
neity test is performed via permutation [20]. Curtis also pro-
posed a sibling-based test of association, which uses a likelihood
ratio statistic [21]. Monks et al. performed a comparative study
of these tests [22].

The DAT, S-TDT and Curtis’ test are valid tests of linkage
and LD only if a single affected and a single unaffected individ-
ual are chosen from a sibship [19–21]. If larger sibships are availa-
ble, subsamples must be chosen to perform these tests and
information from the discarded siblings is lost. Curtis recom-
mended a sampling procedure that involves selecting the dis-
cordant sibling pair who exhibit maximally different marker
genotypes [21]. To avoid the problem of subsampling, Hovarth

and Laird proposed the sibship disequilibrium test (SDT) [23],
which is a valid test of linkage and LD using all discordant sib-
pairs within a sibship. The test compares the average number of
alleles in affected siblings in a sibship versus the average for
unaffected siblings in the sibship. The test statistic is evaluated
using a nonparametric sign test.

In many cases, it is possible to reconstruct the genotypes of the
parents if multiple offspring are available, though this must be
performed with care to avoid bias [24]. Several methods have been
proposed to reconstruct information in an unbiased manner. The
reconstruction-combined (RC)-TDT was proposed by Knapp
for this purpose [25]. Another procedure whereby reconstruction
is performed is the likelihood-based approach of transmit [26].

Of the tests discussed so far, each uses information from two-
generation pedigrees only. Martin et al. proposed a method
whereby multi-generational pedigrees could be used in a TDT-
type test without discarding individuals [27]. Their test – the
pedigree disequilibrium test (PDT) – considers all discordant
sibling pair comparisons and all transmissions from hetero-
zygous parents to affected offspring within a pedigree. An aver-
age of each of these measures is taken for each pedigree and
these pedigree averages then contribute to the overall test statis-
tic. In this way, bias due to relatedness of individuals within a
pedigree is eliminated. This method was developed for diallelic
markers, though a series of tests comparing one allele to the rest
grouped into a single category is also offered.

TDT for quantitative traits
TDT for quantitative traits have also been developed, using vari-
ous strategies. Allison proposed five TDTs for quantitative traits,
differing from one another in sampling and testing strategies [14].
The first test proposed (Q1) utilizes a T-test to compare the phe-
notypic means of randomly selected offspring inheriting the
allele of interest from heterozygous parents. Tests Q2, Q3 and
Q4 utilize sampling strategies, in which only offspring falling in
the tails of the phenotypic distribution are included in the test.
For each of these tests, a problem arises when including offspring
for which both parents are heterozygous. In this case, there are
two transmissions (one from each heterozygous parent) that can
be included in the analysis, so that the phenotype of the offspring
is included twice in the analysis. However, one assumption of
these tests is that observations are independent. Allison’s fifth
test, Q5 attempts to circumvent this problem by use of a regres-
sion-based approach [14]. Rabinowitz independently derived an
equivalent test to Allison’s Q1 test [28].

Both the tests of Allison [14] and Rabinowitz [28] are valid tests
of linkage and LD only when a single offspring per nuclear
family is included in the test; multiple offspring can be used to
test for linkage in the presence of association. George provides a
regression-based test of linkage in the presence of association
that uses all members of a pedigree [29]. To avoid loss of data
when a test of linkage and LD is desired, Monks and Kaplan
[30] extended Rabinowitz’s test [28] so that the correlation struc-
ture between sibs is taken into account and all sibs can be
used. This can provide a substantial increase in power if
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nuclear families with more than one offspring can be collected.
Using a variance-components approach, Abecasis et al. also pro-
vide a method whereby parents and multiple offspring can be
used as a test for linkage and LD [31].

Quantitative trait TDTs using sib data
As the TDT for discrete traits was extended for the case in
which parents are not available, Allison et al. proposed several
sib-based tests of linkage and LD for quantitative traits [32].
Their first method is the use of a mixed-effects ANOVA, which
models sibship as a random variable and marker genotype a
fixed factor; phenotype is the dependent variable. Their second
approach is based on a permutation test.

Case-control tests for structured populations
While family-based TDT are able to circumvent the problems
of population structure, they do come at a price, namely the
need to collect and genotype family members. Another
approach is to sample unrelated cases and controls, but to try to
model population structure into the association test. Devlin
and Roeder demonstrate the effect of population structure,
including stratification and inbreeding on the variance of the
usual case-control test statistic [33]. They show that if the overall
population is not in HWE, the usual allele-based case-control
test is not valid. The Armitage trend test can be used instead, as
they show that it is better able to account for Hardy-Weinberg
disequilibrium (HWD) [34]. As they mention, this is appropri-
ate for an additive genetic model and ignores any nonadditive
genetic effects. They do not mention that the genotype-based
case-control test is an appropriate test in a homogeneous popu-
lation, whether or not HWE holds. Schaid also discusses geno-
type-based tests under a log-linear model, which are also sensi-
tive to nonadditive effects and should be resistant to HWD [17].
These types of tests assume that individuals in the population
are independent, which is not generally the case in a structured
population. Devlin and Roeder discuss the effects of noninde-
pendence of individuals on the variances of the usual case-con-
trol test statistic and the Armitage trend test and show that it is
inflated in this situation [33]. They propose an alternative
method for testing for marker-disease susceptibility using a ran-
dom sample of cases and controls. This method uses data from
multiple markers outside the region of interest in order to gain
information on the variance inflation due to population struc-
ture. This information can then be used to construct various
tests for association. Their primary test is Bayesian, but they
also provide a frequentist test.

Pritchard et al. offer a different solution for accommodating
population structure in a case-control setting [35,36]. Their test
also uses information from a number of markers outside the
region of interest; these are used to infer the underlying struc-
ture of the population [35]. Once this has been done, this infor-
mation is used to detect associations between the trait and
marker within subpopulations [36]. The method uses a Markov-
chain Monte Carlo technique to estimate the proportion of an
individual’s genome that originated from the contributing

subpopulations, as well as the number of these subpopulations
and the allele frequencies within each one. Once this has been
done, these proportions are used in testing for dependencies
between marker alleles and phenotype.

Both the methods of Devlin and Roeder [33] and Pritchard
et al. [36] may offer potential power increases over the TDT-type
tests for the same number of individuals genotyped.

Multiple testing
The multiple testing issues in disease association mapping are
particularly complex. There is often substantial correlation
between test statistic values along the map induced by LD
between genetic markers. Lander and Kruglyak define point-
wise and genome-wide significance levels to distinguish
between probabilities of ‘‘large’’ values of a test statistic at a
given location and anywhere in the genome scan [37]. The
genome-wide significance levels relate to the notion of the fam-
ily-wise error rate (FWER). For a family of hypotheses
{H1,…,Hk}, the FWER is defined as:

FWER = Pr(reject one or more Hi, i ∈S | Hi, i ∈S are true)

Here, S is any subset of K.
Multiple testing methods divide into two extremes. In one

group are the methods that make statements about all the individ-
ual null hypotheses H1,…,HL. In the other group are the ones that
are concerned with the global null hypothesis (∩Hi): that some or
all of the individual null hypotheses are true but without specifying
which ones. It is traditionally required that tests concerned with
individual hypothesis control the FWER. Westfall and Young
argue that it is also desirable that the FWER is controlled in the
strong sense [38]. Specifically, for the significance level α, a multiple
testing procedure controls the FWER in the strong sense if FWER
≤ α for all subsets of null hypotheses, regardless of which of them
are true. The distinction between the strong and the weak control
is thus only the issue in the situation of the ‘partial null hypothesis’,
i.e., when some of the null hypotheses are false. A common
method is the single-step Bonferroni technique. It rejects Hi if the
p-value from testing this hypothesis, pi, is less than or equal to α/L.
Several step-wise procedures have been proposed. A method of
Holm is an example of a step-down procedure [39]. It is based on
the Bonferroni inequality and the min p statistic. A method of
Hochberg is a further improvement and a sequential adaptation of
the Bonferroni technique [40]. Hochberg’s method is to order pi’s,
start with i = L and once pj ≤ α/(L-j+1), then reject all Hi for i ≤ j.
Note that the ‘effective’ number of tests, L*, is expected to be
smaller than L due to the positive correlation between test statis-
tics. Lander and Botstein assume the statistic values are jointly
multivariate normal and use the Ornstein-Uhlenbeck diffusion to
compute L* [41]. Westfall et al. discuss how PROC MULTTEST
of SAS/STAT® can be used to obtain values of L* exactly [42].

Benjamini and Hochberg propose to control the ‘false dis-
covery rate’, or the expected proportion of false rejections
[43]. Benjamini and Hochberg’s procedure (BH) is to order
pi’s and if pj ≤ jα/L, then reject all Hi for i ≤ j. This error rate
is equivalent to the FWER when all hypotheses are true.
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Clearly, the BH method controls the FWER in the weak
sense. However, the gain in power to detect true effects can
be substantial. The BH method is most appropriate when the
number of true effects is known to be large, a moderate
amount of the false-positive results can be tolerated or if a
follow-up study is anticipated [44,45]. Benjamini and Hoch-
berg state that “a desirable error rate to control may be the
expected proportion of errors among the rejected hypotheses,
which we term the false discovery rate (FDR)” [43]. It should
be stressed, however, that the BH method controls FDR
unconditionally and hence does not provide information
about the proportion of false-positive results for any particu-
lar experiment. Conditional control would require knowl-
edge of the unknown number of true null hypotheses as well
as the power of the test to detect true effects.

‘Combination’ methods, such as of Fisher, Stouffer et al., Edg-
ington, Simes, Zaykin et al. are testing the global null hypothesis,
∩Hi [46–50]. Once the hypothesis is rejected, it is possible only to
conclude that one or more Hi’s are false. This is somewhat less so
with the Fisher’s method, since it is disproportionally influenced
by the tests resulting in small p-values [51].

The closure principle of Marcus et al. provides a bridge
between global and individual tests [52]. This procedure considers
all possible combination hypotheses obtained via the intersection
of the set of individual hypotheses of interest. If an individual
hypothesis and all intersections that contain it as a component
are rejected by a global test, then the closure principle allows to
reject the given hypothesis, strongly controlling FWER.

It has been suggested that flanking markers around signifi-
cant tests must also show some significance [53]. In the context
of linkage analysis, Goldin et al. suggested that p-values should
be averaged across certain genetic distances [54]. Terwilliger
et al. argued that in general, peaks tend to be wider around true
positives [55]. Siegmund looked at the problem from the view-
point of smoothing [56]. Zaykin et al. suggested using global
tests for a similar purpose, exploiting their feature of taking a
set of several moderately small p-values and use them to rein-
force one another [50]. Thus, it is possible to produce either a
more powerful test or provide a better peak definition.

Haplotype-trait association tests
As noted above, combination methods provide a way of taking
into account several markers to produce a more powerful test
and facilitate localization of genes of interest. This approach
operates on marginal effects of single markers. It is possible,
however, that using joint frequencies of alleles residing on the
same haplotypes may be more successful.

The potential benefit in using haplotypes is 2-fold. First, a set
of alleles at single markers forming a haplotype may itself
account for the variation in the trait of interest [57,58]. Second,
even if a single polymorphism affects the trait, surrounding
markers form haplotypes that may be in much higher LD with
that polymorphism as compared to individual markers. There
has been much controversy around the issue of haplotype util-
ity. Analytical power calculations of Akey et al. suggest that

haplotypes can significantly improve power and robustness of
association mapping [59]. On the other hand, simulation studies
by Long and Langley [60] and Kaplan and Morris [61], found
single-marker tests at least as powerful as haplotype-based tests.
A particular issue of concern is that all three studies assumed
that haplotypes are observed directly, so that the haplotype fre-
quencies are readily available. Currently, this is rarely the case.
Most often only single-marker genotypes are available and only
individuals that are heterozygous at no more than one marker
can unambiguously be assigned a pair of haplotypes. This situa-
tion (gametic phase ambiguity) requires estimation of frequen-
cies by missing data techniques, such as the EM algorithm,
increasing the variance of the test statistic (for details of the EM
in the context of haplotype frequency estimation see [62]).
Future studies are needed to define optimal tests for haplotype-
trait association, taking into account the balance between the
increase in degrees of freedom of haplotype-based tests that
results in power loss and stronger linkage disequilibria of haplo-
types with functional sites that provide increase in power.

Several studies concentrated on the issue of estimating haplo-
type frequencies per se. Fallin and Schork performed simula-
tions sampling population frequencies of haplotypes from
Dirichlet and scaled normal distributions and found pro-
nounced accuracy of the EM algorithm for inferring haplotype
frequencies on average, even when the HWE assumption does
not hold [63]. Stephens et al. devised a Markov chain Monte
Carlo method that allows reconstruction of haplotypes with
very large numbers of markers [64]. By building in a general
mutation model they also obtained substantial reduction in
error rates of assigning pairs of haplotypes to individuals.

Expert opinion
While many techniques for association mapping have been pro-
posed along with various methods to evaluate them, until now
there have been reasonably few success stories. Due to this, there
is an ongoing debate as to whether association mapping is or
will one day be a useful tool. Certainly, it seems obvious that
mapping by association cannot be as simple as following a string
of p-values until the smallest one is reached, indicating the posi-
tion of the gene. Instead, one needs to examine regions in which
evidence for association seems to be strong, hopefully taking
into account the correlations between tests. This is no small
task, as it implies that enough markers have been examined in a
region so that an association will not be missed, and at the same
time that the multiple testing problem has been sufficiently
addressed. At the current time, it seems unlikely that this can be
done effectively on a genome-wide scope. Instead, with the cur-
rent techniques, it is probably more reasonable to limit associa-
tion studies to smaller regions that have been identified through
linkage analysis or because they contain biologically relevant
candidate genes. Even in reduced regions there is the concern
over the number of polymorphic sites that must be examined. It
is here that the biggest challenge lies. This becomes more rele-
vant and more pressing as research into new methodologies for
faster and cheaper genotyping continues to occur at a rapid rate.
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In a recent commentary, Weiss and Terwilliger detail many
problems of the current approach [65]. While they seem to offer
little in place of the techniques they criticize, they do make a
number of valid points. One of these is that in order to come
close to addressing the types of complex genetic problems being
studied and on the scale that is desired, better experimental
designs will be necessary. This is undoubtedly true. One interest-
ing question is how much of the progress that will be made in the
future will be data-driven rather than hypothesis-driven. All in
all, there is a long road ahead and the future is far from clear.

Five-year view
Currently, many association studies are carried out using mark-
ers that were discovered by examining a sample (sometimes
very small) of random individuals, such as those available
through public databases. This leads to various power-related

issues, the obvious one being that the highly polymorphic
markers are not likely to be associated with the phenotype of
interest. On the other hand, low-frequency ‘relevant’ polymor-
phisms – if they are even observed – can bring down statistical
power considerably. Advances in computational and molecular
technology will soon make it possible to obtain sequences of
entire candidate genes for an individual. This will provide an
entirely new way of dealing with the marker selection problem.
Sets of markers will be selected in a phenotype-specific manner
out of all markers in a collection of candidate genes. Markers or
marker combinations that yield maximum allele or haplotype
frequency differences between levels of the phenotype will be
selected by data mining techniques for the consequent analysis.
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Key issues

•  Association mapping can potentially be useful in determining the location of a gene affecting a trait of interest within a much 
smaller region than can be determined using traditional linkage analysis approaches.

•  Care must be taken regarding the results of case-control association tests; significant associations for these types of tests do not 
necessarily indicate proximity of the marker to a gene affecting the trait. Instead, population structure, nonequilibrium conditions, 
or variability of disequilibrium may be causing unexpected false-positive results.

•  Significant results found using tests based on family data, such as the transmission/disequilibrium type tests, can be indicators of 
proximity. However, care must be taken when determining whether multiple offspring from a pedigree can be included in the 
analysis.

•  If family data are not available, some case-control tests have been developed to take population structure within the sample into 
consideration [36]. These tests are less likely to suffer unexpected levels of false-positive results.

•  An issue of shared genealogy [33] causes dependencies among observations at the same level of response. It is not clear what the 
extent of this ‘cryptic relatedness’ in natural populations is. Methods of stratification control are applicable here.

•  There is much to be gained by utilizing multiple testing procedures that take into consideration the correlations between 
association-based tests at nearby markers, as well as the discrete nature of the distribution of the test statistics.

•  Debate over the utility of haplotyping techniques continues. Controversy exists even when haplotypes are determined 
experimentally, let alone when they must be inferred through statistical techniques. At the bottom of much of this debate, however, 
is the assumption that there is only a single polymorphic site within a gene that is contributing to phenotypic variation. In actuality, 
it is often found that variation in phenotype is due to combinations of polymorphisms at different sites within the gene and also in 
the promotor regions. For these cases, it may be necessary to examine entire haplotypes in order to dissect phenotypic variation.

•  Better techniques for utilizing marker haplotype information are needed. Current haplotype/response association methods rely on 
assumptions, such as Hardy-Weinberg equilibrium in cases and controls and generally lack explicit biological models.

•  Another unresolved issue is how to determine the density of markers needed in a region that will assure reasonable power to detect 
true marker-phenotype associations, but will not suffer from multiple testing issues. An important consideration in marker selection 
is the underlying phenotype model. It is not clear whether allele frequencies and pair-wise correlations between markers (or 
equivalently, two-marker haplotypes) are sufficient considerations or whether multiple-marker haplotypes with corresponding 
higher-order disequilibria are also important for marker selection.

References
Papers of special note have been highlighted as:
• of interest
•• of considerable interest

1 Lewontin RC, Kojima K-I. The evolutionary 
dynamics of complex polymorphisms. 

Evolution 14(4), 458–472 (1960).

2 Devlin B, Risch N. Linkage disequilibrium 
measures for fine-scale mapping. Genomics 
29, 311–322 (1995).

• Investigates properties of several LD 
measures with relation to recombination 

probability.

3 Jorde LB, Watkins WS, Carlson M et al. 
Linkage disequilibrium predicts physical 
distance in the adenomatous polyposis coli 
region. Am. J. Hum. Genet. 54, 884–898 
(1994).



Nielsen & Zaykin

96 Expert Rev. Mol. Diagn. 1(3), (2001)

4 Spielman RS, McGinnis RE, Ewens WJ. 
Transmission test for linkage 
disequilibrium: the insulin gene region and 
insulin-dependent diabetes mellitus 
(IDDM). Am. J. Hum. Genet. 52, 506–516 
(1993).

•• Introduces the transmission/
disequilibrium test for discrete traits, 
which provides a test for LD in the 
presence of linkage.

5 Hill WG, Weir BS. Variances and 
covariances of squared linkage disequibria 
in finite populations. Theor. Popul. Biolo 
33, 54–78 (1988).

6 Hill WG, Weir BS. Maximum likelihood 
estimation of gene location by linkage 
disequibrium. Am. J. Hum. Genet. 54, 705–
714 (1994).

7 Weir BS, Cockerham CC. Estimation of 
linkage disequilibrium in randomly mating 
populations. Heredity 42, 105–111 (1979).

8 Guo SW. Linkage disequilibrium measures 
for fine-scale mapping: a comparison. 
Human Heredity 47, 301–314 (1997).

9 Morton NE, Zhang W, Taillon-Miller P, 
Ennis S, Kwok P-Y, Collins A. The optimal 
measure of allelic association. Proc. Natl 
Acad. Sci. USA 98, 5217–5221 (2001).

10 Nielsen DM, Weir BS. A classical setting 
for associations between markers and loci 
affecting quantitative traits. Genet. Res. 
74(3), 271–227 (1999).

11 Nielsen DM, Weir BS. Association Studies 
under General Disease Models. Theor. 
Popul. Biol. (2001) (In Press).

• Discusses how the manner in which a gene 
acts to influence the phenotype can affect 
the power of association tests to detect 
that gene.

12 Boerwinkle E, Charkraborty R, Sing CF. 
The use of measured genotype information 
in the analysis of quantitative phenotypes in 
man. Ann. Hum. Genet. 50, 181–194 
(1986).

13 Page GP, Amos CI. Comparison of linkage-
disequilibrium methods for localization of 
genes influencing quantitative traits in 
humans. Am. J. Hum. Genet. 64, 1194–
1205 (1999).

14 Allison DB. Transmission-disequilibrium 
tests for quantitative traits. Am. J. Hum. 
Genet. 60, 676–690 (1997).

•• Provides several transmission/
disequilibrium tests for quantitative traits.  
This allows tests of linkage and LD 
between the marker and a locus affecting 
the quantitative trait.

15 Spielman RS, Ewens WJ. The TDT and 
other family-based tests for linkage 
disequilibrium and association. Am. J. 
Hum. Genet. 59(5), 983–989 (1996).

16 Martin ER, Kaplan NL, Weir BS.  Tests for 
linkage and association in nuclear families.  
Am. J. Hum. Genet. 61, 439–448 (1997).

17 Schaid DJ. General score tests for 
associations of genetic markers with disease 
using cases and their parents. Genet. 
Epidemiol. 13, 423–449 (1996).

• Provides a regression-based framework for 
performing transmission/disequilibrium-
type tests in a manner that allows a genetic 
model plus other covariates to be included 
in the analysis.

18 Schaid DJ. Likelihoods and TDT for the 
case-parents design. Genet. Epidemiol. 16, 
250–260 (1999).

19 Spielman RS, Ewens WJ. A sibship test for 
linkage in the presence of association: the 
sib transmission/disequilibrium test. Am. J. 
Hum. Genet. 62(2), 450–458 (1998).

• Provides a test of linkage and LD that does 
not require parents to be genotyped.

20 Boehnke M, Langefeld CD. Genetic 
association mapping based on discordant 
sib pairs, the discordant alleles test (DAT). 
Am. J. Hum. Genet. 62, 950–961 (1998).

21 Curtis D. Use of siblings as controls in case-
control association studies. Ann. Hum. 
Genet. 61, 319–333 (1997).

22 Monks SA, Kaplan NL, Weir BS. A 
comparative study of sibship tests for 
linkage and/or association. Am. J. Hum. 
Genet. 63, 1507–1516 (1998).

23 Hovarth SM, Laird NM. A discordant-
sibship test for disequilibrium and linkage: 
no need for parental data. Am. J. Hum. 
Genet. 63, 1886–1897 (1998).

• Provides a test of linkage and LD that does 
not require parents to be genotyped and 
can accomodate multiple siblings.

24 Curtis D, Sham PC. A note on the 
application of the transmission 
disequilibrium test when a parent is 
missing. Am. J. Hum. Genet. 56, 811–812 
(1995).

25 Knapp M. The transmission/
disequilibrium test and parental-genotype 
reconstruction: the reconstruction-
combined transmission/disequilibrium test. 
Am. J. Hum. Genet. 64, 861–870 (1999).

• Describes a TDT in which missing data 
can be inferred in a nonbiased fashion.

26 Clayton D. A generalization of the 
transmission/disequilibrium test for 

uncertain-haplotype transmission. Am. J. 
Hum. Genet. 65, 1170–1177 (1999).

27 Martin ER, Monks SA, Warren LL, Kaplan 
NL. A test for linkage and association in 
general pedigrees: The pedigree 
disequilibrium test. Am. J. Hum. Genet. 67, 
146–154 (2000).

•• Created a TDT that allows entire 
pedigrees to be used, including multiple 
siblings and multiple generations.

28 Rabinowitz D. A transmission 
disequilibrium test for quantitative trait 
loci. Hum. Hered. 47, 342–350 (1997).

29 George V, Tiwari HK, Zhu X, Elston RC. 
A test of transmission/disequilibrium for 
quantitative traits in pedigree data, by 
multiple regression. Am. J. Hum. Genet. 65, 
236–245 (1999).

30 Monks SA, Kaplan NL. Removing the 
sampling restrictions from family-based 
tests of association for a quantitative trait 
locus. Am. J. Hum. Genet. 66, 576–592 
(2000).

31 Abecasis GR, Cardon LR, Cookson WO. A 
general test of association for quantitative 
traits in nuclear families. Am. J. Hum. 
Genet. 66, 279–292 (2000).

•• Provides a TDT for quantitative traits that 
can be applied to whole pedigrees.

32 Allison DB, Heo M, Kaplan N, Martin ER. 
Sibling-based tests of linkage and 
association for quantitative traits. Am. J. 
Hum. Genet. 64, 1754–1764 (1999).

33 Devlin B, Roeder K. Genomic control for 
association studies. Biometrics 55, 997–
1004 (1999).

•• Discusses the effects of inbreeding and 
cryptic relatedness on case-control tests.  
Provides a framework by which case-
control tests can be adjusted when these 
effects are present so that spurious 
assocations can be avoided.

34 Armitage P. Tests for linear trends in 
proportions and frequencies. Biometrics 11, 
375–386 (1955).

35 Pritchard JK, Stephens M, Donnelly P. 
Inference of population structure using 
mulitlocus genotype data. Genetics 155, 
945–959 (2000).

• Develops a methodology whereby a 
random sample from a population can be 
examined to determine the degree of 
population structure and attempts to 
estimate various parameters describing 
this structure.

36 Pritchard JK, Stephens M, Rosenberg NA, 
Donnelly P. Association mapping in 



Association mapping

www.future-drugs.com 97

structured populations. Am. J. Hum. Genet. 
67, 170–181 (2000).

•• Incorporates parameter estimates 
describing the structure of a population 
[35] into a case-control test.  This test is 
less susceptible to spurious associations 
due to population structure.

37 Lander E, Kruglyak L. Genetic dissection of 
complex traits: guidelines for interpreting 
and reporting linkage results. Nature Genet. 
11, 241–247 (1996).

• Discusses significance levels and multiple 
testing adjustments in linkage scans.

38 Westfall PH, Young SS. Resampling-Based 
Multiple Testing. Wiley, New York, USA 
(1993).

39 Holm S. A simple sequentially rejective 
multiple test procedure. Scand. J. Stat. 6, 
65–70 (1979).

40 Hochberg Y. A sharper bonferroni 
procedure for multiple tests of significance. 
Biometrika 75(4), 800–802 (1988).

41 Lander ES, Botstein D. Mapping 
Mendelian factors underlying quantitative 
traits using RFLP linkage maps. Genetics 
121, 185–199 (1989).

42 Westfall PH, Zaykin DV, Young SS. 
Multiple tests for genetic effects in 
association studies. In: Statistical Methods 
in Molecular Biology.  Looney S (Ed.), 
(2001).

43 Benjamini Y, Hochberg Y. Controlling the 
false discovery rate – a practical and 
powerful approach to multiple testing. J. 
Royal Stat. Soc. B-methodol. 57, 289–300 
(1995).

44 Weller JI, Song JZ, Heyen DW, Lewin HA, 
Ron M A new approach to the problem of 
multiple comparisons in the genetic 
dissection of complex traits. Genetics 150, 
1699–1706 (1998).

45 Drigalenko EI, Elston RC. False discoveries 
in genome scanning. Genet. Epidemiol. 14, 
779–784 (1997).

46 Fisher RA. Statistical Methods for Research 
Workers. Oliver and Boyd, London, UK 
(1932).

47 Stouffer SA, Suchman EA, DeVinney LC, 
Star SA, Williams RM, Jr. The American 
Soldier (Volume 1; Adjustment During Army 
Life). Princeton Univ. Press, Princeton, 
USA, (1949).

48 Edgington ES. An additive method for 
combining probability values from 
independent experiments. J. Psychology 80, 
351–363 (1972).

49 Simes RJ. An improved Bonferroni 
procedure for multiple tests of significance. 
Biometrika 73, 751–754 (1986).

50 Zaykin DV, Zhivotovsky LA, Westfall PH, 
Weir BS. Truncated product method for 
combining p-values. Genet. Epidemiol. 
(2001) (In Press).

• Discusses and compares tests for 
combining p-values.

51 Rice WR. A consensus combined p -value 
and the family-wide significance of 
component tests. Biometrics 46, 303–308 
(1990).

52 Marcus R, Peritz E, Gabriel KR. On closed 
testing procedures with special reference to 
ordered analysis of variance. Biometrika 63, 
655–660 (1976).

53 Juo SH, Beaty TH, Duffy DL et al. A 
comprehensive analysis of complex traits in 
problem 2A. Genet. Epidemiol. 14, 815–
820 (1997).

54 Goldin LR, Chase GA, Wilson AF. 
Regional inference with averaged p -values 
increases the power to detect linkage. Genet. 
Epidemiol. 17, 157–164 (1999).

55 Terwilliger JD, Shannon WD, Lathrop GM 
et al. True and false positive peaks in 
genomewide scans: applications of length-
biased sampling to genome mapping. Am. 
J. Hum. Genet. 61, 430–438 (1997).

56 Siegmund D. Is peak height sufficient? 
Genet. Epidemiol. 20, 403–408 (2001).

• Investigates width versus height of linkage 
signals from the viewpoint of smoothing.

57 Drysdale CM, McGraw DW, Stack CB et 
al. Complex promoter and coding region 
b2-adrenergic receptor haplotypes alter 
receptor expression and predict in vivo 
responsiveness. Proc. Natl Acad. Sci. USA 
97, 10483–10488 (2000).

58 Joosten PHLJ, Toepoel M, Mariman ECM, 
Van Zoelen EJJ. Promoter haplotype 
combinations of the platelet-derived growth 
factor a-receptor gene predispose to human 
neural tube defects. Nature Genet. 27, 215–
217 (2001).

59 Akey J, Jin L, Xiong M. Haplotypes vs 
single marker linkage disequilibrium tests’: 

what do we gain? Eur. J. Hum. Genet. 9, 
291–300 (2000).

• Provides an analytical power study 
examining situations when haplotype-
based tests have increased power.

60 Long AD, Langley CH. The power of 
association studies to detect the 
contribution of candidate genetic loci to 
variation in complex traits. Genome Res. 9, 
720–731 (1999).

61 Kaplan N, Morris R. Issues concerning 
association studies for fine mapping a 
susceptibility gene for a complex disease. 
Genet. Epidemiol. 20, 432–457 (2001).

• Describes a study of spacial distributions 
of statistic values of single markers and 
haplotype-based tests for the case-control 
design. Relates the χχχχ2 noncentrality 
parameter to marker and disease 
characteristics.

62 Excoffier L, Slatkin M. Maximum-
likelihood estimation of molecular 
haplotype frequencies in a diploid 
population. Mol. Biol. Evol. 12, 921–927 
(1995).

• Describes the multilocus EM algorithm, 
along with sample size and LD 
considerations. 

63 Fallin D, Schork NJ. Accuracy of haplotype 
frequency estimation for biallelic loci, via 
the expectation-maximization algorithm for 
unphased diploid genotype data. Am. J. 
Hum. Genet. 67, 947–959 (2000).

• Demonstrates the accuracy of the EM 
algorithm under a variety of scenarios, 
including Hardy-Weinberg disequilibrium 
at individual markers.

64 Stephens M, Smith NJ, Donnelly P. A new 
statistical method for haplotype 
reconstruction from population data. Am. 
J. Hum. Genet. 68, 978–989 (2001).

•• Compares phase reconstruction methods 
and introduces a method with substantial 
reduction of errors in assigning pairs of 
haplotypes to individuals.

65 Weiss KM, Terwilliger JD. How many 
diseases does it take to map a gene with 
SNPs? Nature Genet. 26, 151–157 (2000).

• Discusses many of the shortcomings of 
current association-based mapping 
strategies.  Provides a basis for examining 
current methodologies, offering a 
challenge to find ways to improve these 
techniques.


