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Abstract

Associations between allelic frequencies, within and between loci, can be tested for with an exact

test. The probability of the set of multi-locus genotypes in a sample, conditional on the allelic

counts, is calculated from multinomial theory under the hypothesis of no association. Alleles are

then permuted and the conditional probability calculated for the permuted genotypic array. The

proportion of arrays no more probable than the original sample provides the significance level for

the test. An algorithm is provided for counting genotypes efficiently in the arrays, and powers of

the test presented for various kinds of association. The powers for the case when associations are

generated by admixture of several populations suggest that exact tests are capable of detecting

levels of association that would affect forensic calculations to a significant extent.
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INTRODUCTION

In the absence of evolutionary forces such as drift, selection, migration or mutation, genotypic

frequencies are expected to be given by the products of corresponding allelic frequencies. Even if

these forces are known to be present, however, it may be that genotypic frequencies are very close to

the allelic frequency products. There are situations when it is convenient to be able to invoke this

“product rule” for multilocus genotypes, as in the use of genetic profiles for human identification.

A specific multilocus genotype is unlikely to have been seen in samples collected for the purpose

of estimating frequencies, even though all the constituent alleles are present, and then the product

rule offers a means of providing an estimate. Of course, it is necessary first to test for consistency

of genotype frequencies to products of allele frequencies and such tests are covered in this paper.

With many loci and many alleles per locus, there are very many possible associations among

the frequencies of subsets of the alleles. Even for two alleles at two loci, for example, there are six

pairs of genes, four triples and one set of four genes to be considered (Weir and Cockerham, 1989).

If the only issue is whether allele frequencies can be used to construct genotype frequencies, all

these associations are tested for simultaneously in a single test. This has the advantage of avoiding

problems with multiple tests, and the power of the test sometimes increases with the number of

loci and alleles per locus. If there is interest in some of the individual associations, then specific

tests can be constructed, and will be discussed here.

The primary purpose of this paper is to examine the use of “exact” tests, meaning tests based

on the probabilities of sets of alleles conditional on observed counts of subsets of the alleles. In

general these tests are expected to perform well and to avoid the problems faced by chi-square

goodness-of-fit tests when expected numbers are small. Because of the large number of possible

multi-allelic arrays, it is not possible to examine them all to compute significance levels for the tests.

Samples of arrays are generated by permutation, following the suggestion of Guo and Thompson

(1992).
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GENERAL METHOD

The general hypothesis is that there is no association among the frequencies of constituent genes

of a genotype. For locus l, each of the two alleles received by an individual at that locus has

probability pli of being allelic type Ali . If P1i1j ,2i2j ,···,LiLj is the population frequency of the genotype

A1iA1jA2iA2j · · ·ALiALj , then the hypothesis can be expressed as

P1i1j ,2i2j ,···,LiLj = 2H
∏
l

pliplj (1)

where H is the number of loci that are heterozygous. When only one locus is being considered and

L = 1, Equation 1 is just the Hardy-Weinberg law. In other cases, rejection of the hypothesis does

not indicate whether it is allelic frequencies within or between loci that are associated.

The development of a testing strategy is based on the multinomial distribution, meaning that

each member of a population is assumed to be equally likely to be sampled, and that there is the

same probability for each sample member having a particular genotype. Sample sizes are therefore

considered to be very much smaller than the population sizes. If A indicates a multilocus genotype,

and nAg is the number of individuals of type Ag in a sample of size n from a population in which

those genotypes have frequency PAg , then

Pr(nA1 , nA2 , · · · , nAG
) =

n!∏G
g=1 nAg !

G∏
g=1

(PAg)
nAg

The quantity G is the number of different genotypes possible.

Under the null hypothesis of Equation 1, allelic counts nli at locus l are multinomially distributed

with sample size 2n and probabilities pli . Furthermore, under the hypothesis these distributions

are independent over loci. The joint probability of the sets of allelic counts {nli} is therefore

Pr({nl1}, {n2i}, · · · , {nLi}) =
L∏

l=1

(
(2n)!∏

i nli !

∏
i

(pli)
nli

)
and the probability of the genotypic counts conditional on the allelic counts is

Pr({nAg}|{nli}) =
n!∏G

g=1 nAg !

G∏
g=1

(PAg)
nAg

L∏
l=1

∏
i nli !

(2n)!
∏

i(pli)
nli !

Under the null hypothesis of complete independence of allele frequencies

Pr({nAg}|{nli}) =
n!
∏G

g=1 2nAg Hg∏G
g=1 nAg !

L∏
l=1

∏
i nli !

(2n)!
(2)

3



where count Hg is the number of heterozygous loci in genotype Ag, of which there are nAg copies.

Note that the unknown allelic frequencies pli have cancelled out of this expression.

Genotypic arrays {nAg}, generated by permutation, with conditional probabilities equal to or

less than that of the observed sample array contribute to the probability with which the null

hypothesis would be rejected if it was true. This is the significance level, or p-value. In general,

it is not feasible to calculate this quantity exactly because of the prohibitively large number of

genotypic count arrays for a given array of allelic counts.

Gail and Mantel (1977) discussed methods for determining the numbers of two- and three-

dimensional contingency tables with fixed marginals. Another approximate method for setting

a lower bound on the number will suffice to show that the number is indeed prohibitive. If P1

is the largest value of all the array probabilities, then the number of arrays must be at least

1 + (1 − P1)/P1 = 1/P1. This would be the actual number if all arrays had probability P1.

Similarly, if P1 is the smallest of the T largest probabilities, the number of arrays must be at least

T + (1−
∑T

i=1 Pi)/P1. For cases when all these P ’s are small, the lower bound is given essentially

by (1 −
∑T

i=2 Pi)/P1. Since the ordering of all possible P ’s is unknown, this bound is calculated

by finding the set of T largest P ’s for a large number of permuted arrays. Having T > 1 protects

against under-estimation. The procedure was applied to STR data from a sample of 182 people

typed at loci with 6, 6, 9 and 14 alleles. With T = 1 and 65,000 permutations, the lower bound

was estimated to be of the order of 10748 in each of three separate determinations. Obviously, it is

not possible to examine all possible arrays.

Instead of identifying all arrays with lower conditional probabilities than the sample, a set

of arrays is generated randomly by permuting those alleles hypothesized to be independent. For

the hypothesis in Equation 1, this means that alleles are permuted among individuals within loci,

and independent permutations performed for each locus. The proportion of permuted arrays as

probable or less probable than the sample forms an estimate of the significance level. If the true

significance level is α, then with probability 0.95 the estimate will be within δ of that value after

m permutations if m ≈ 4α(1 − α)/δ2 ≤ 1/δ2. Hence, with 95% probability, 10,000 permutations

give an estimate accurate to two decimal places. Further discussion of this approach was given by

Guo and Thompson (1992).
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Applying the permutation method to estimate significance levels can be performed very effi-

ciently. As all the arrays have the same allelic counts, for purposes of comparison it is necessary to

compute only

Ps =
∏
g

2nAg Hg

nAg !
(3)

although it is the logarithm of Ps that is computed in practice, using an algorithm of Press et al.

(1988). Furthermore, it is not necessary to step through all possible multilocus genotypes, since

only those with non-zero counts contribute to Equation 3. From now on, this will be indicated by

gεz, meaning that only those g values for which nAg > 0 are considered. The computer storage

requirements therefore depend on the sample size rather than the number of possible genotypes.

Algorithm

The greatest saving in computing time is made in the way of counting the number of times each

genotype appears in one of the genotypic arrays generated by permuting alleles. A näıve way would

be to assign each genotype a numerical identifier, sort the identifiers and then count how many

times each one occurs. For locus B with alleles numbered 1 to nB, a possible identifier sB for

genotype BiBj , j ≤ i is

sB =
i(i− 1)

2
+ j

Values of this quantity range from 1 for B1B1 to SB = nB(nB + 1)/2 for BnBBnB . If there is a

second locus C with nC alleles, then the identifier sC ranging from 1 to SC for genotypes at that

locus can be defined similarly, and the identifier for two-locus genotypes is defined by

sBC = SC(sB − 1) + sC

which ranges from 1 for B1B1C1C1 to SBSC for BnBBnBCnC CnC . The extension to multiple loci

is straightforward. If necessary, the genotype can be recovered from the identifier. In the two-locus

case, for example,

sC =
iC(iC − 1)

2
+ jC = sBC(modSC)

sB =
iB(iB − 1)

2
+ jB =

(sBC − sC)
SC

+ 1
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and the one-locus genotypes can be recovered from the one-locus identifiers by

i = 1 + integer part of[(
√

8sB + 1− 1)/2]

j = sB − i(i− 1)/2

The problem with this approach is the need to sort as many identifiers as there are individuals in

the sample. The binary search tree method now described is very much faster.

The data set D has an element for every individual in the sample. A tree is constructed with

nodes for every distinct genotype in D. Each element of D is placed on the tree, either at an

existing node or at a new node, by comparing its identifier to the identifiers for the previously

placed elements. This placement procedure begins at the root node of the tree, and at each node,

the tree is followed in one of two directions depending on whether the identifier is greater than or

less than the identifier for that node.

The algorithm is as follows:

1. Build the binary search tree

a. Set counter i = 1. Take the element of D and insert it at the root node as the node

identifier (ID). Set the root internal counter C (the number of times that genotype

occurs in the sample) to 1 and the number of nodes NN to 1.

b. Increment i. Take the ith element ri from D and recursively traverse the tree. If ri

is equal to the ID from some existing node, taking into account that for each locus

genotype AA′ is equal to A′A, increment the internal counter C at that node by 1.

Otherwise, if any outer node (the top) is reached without finding an equal ID, insert ri

into the tree as a new node, setting the node for that ID to ri, setting its count C to 1,

and incrementing NN by 1.

c. If i < n, repeat the previous step.

2. Calculate lnPs in Equation 3.

a. Set lnPs = 0.

b. For each node j in the tree, calculate CjHj ln 2− ln(Cj !) and add this to lnPs.
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c. If D is the original sample, set PO = Ps and set K = 0. If D is a permuted array,

increment K by 1 if lnPs ≤ lnPO.

3. Permutation stage.

a. For each locus, randomly permute the 2n alleles in D for that locus. Return to the

binary search tree step. Do this step while the number of permutations is less than the

required number NR.

4. The estimated significance level is K/NR.

The binary search tree method for storing and retrieving the numbers of each multilocus geno-

type in a sample performs best when the genotypes are not sorted. This will certainly be the case

for the permuted arrays. In the worst case, when the genotypes have been sorted, the method

degenerates to a sequential search. Since the genotypes in the tree are stored in sorted order, it

is guaranteed that no parts of the tree other than the current sub-tree can contain the particular

genotype being sought. This means that only half the remainder of the tree needs be considered

after each comparison. The maximum number of nodes in the tree cannot exceed the sample size,

so that the average branch length remains the same as the numbers of loci and alleles increase and

the time to complete the algorithm is therefore affected very little by these two numbers. The most

time-consuming part of the algorithm is the permutation stage. Its speed depends on the sample

size and number of loci, but not the total number of alleles per locus.

The binary search tree method has been programmed in C++, taking advantage of features of

that language. It may be helpful, however, to illustrate the nature of the algorithm using the more

primitive genotype-identifiers described above. Suppose a sample of 11 multilocus genotypes has

been reduced to integer identifiers by the method described above, and these identifiers are 24, 8,

37, 95, 24, 6, 28, 15, 23, 94, 27. The root node of the tree is 24, and at that stage C = 1, NN = 1.

The tree can be drawn under the rule that the direction of travel is up to the left for identifiers

smaller than that at the current node and up to the right for larger identifiers. The resulting tree

is shown in Figure 1. A 12th genotype with identifier 25 would be located after only three steps:

25 is greater than 24, less than 37, and less than 28.
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OTHER TESTS

More specific tests can be performed in order to characterize associations among subsets of the

alleles within genotypes, or to increase the power of detecting specific associations. Details will

now be given for tests on two-locus data.

Products of one-locus frequencies

There may be interest in whether two-locus genotypic frequencies can be represented as products

of one-locus frequencies without assuming Hardy-Weinberg equilibrium. The null hypothesis can

be written as

PAiAjBkBl
= PAiAjPBkBl

(4)

In the human identification case, such a situation might be appropriate when there was evidence

of Hardy-Weinberg disequilibrium at each locus, and two-locus genotypic frequencies were to be

constructed as products of observed one-locus genotypic frequencies.

The sample counts can be written in a two-way table with row totals being A-locus genotype

counts nij and column totals being B-locus counts nkl. The table cell entries are the two-locus

counts nijkl. The probability of the two-locus array conditional on the two one-locus arrays, under

the null hypothesis in Equation 4, is

Pr({nijkl}|{nAij}, {nBkl
}) =

∏
i,j nAij !

∏
k,l nBkl

!
n!
∏

i,j

∏
k,l nijkl!

In this notation, the subscripts i, j range over all A-genotypes in the sample and so include each

of the rows in the table, and the subscripts k, l range over all B-genotypes and so include all the

columns in the table. In estimating the significance level for the exact test of Equation 4, the only

quantity to be calculated is Ps = 1/
∏

gεz ng!, where g indexes each of the two-locus genotypes with

a non-zero count. Permutation proceeds by keeping the one-locus genotypes intact and permuting

these genotypes among individuals at one of the two loci.
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Products of genotypic frequencies at one locus and two allele frequencies at other

locus

To see if the two-locus genotypic frequencies PAiAjBkBl
can be represented as the product of the

genotype frequency PAiAj at one locus and the product of two allele frequencies pBk
pBl

at the other

locus, the hypothesis is

PAiAjBkBl
= 2HklPAiAjpBk

pBl
(5)

where Hkl is 1 if k 6= l and is 0 if k = l. A human identification setting for this test may be when

one of two loci show departures from Hardy-Weinberg frequencies.

The conditional probability of a sample under the hypothesis in Equation 5 is

Pr({nijkl}|{nAij}, {nBk
}) =

2HB
∏

i,j nAij !
∏

k nBk
!

(2n)!
∏

i,j

∏
k,l nijkl!

where HB is the number of individuals in the sample that are heterozygous at locus B. Estimating

the significance level in this case requires comparisons among values of 2HB/
∏

gεz ng!, where ng is

still the number of occurrences of the gth two-locus genotype. Permutation proceeds by holding

the A-locus genotypes intact and shuffling all 2n B-locus alleles among individuals.

DISCARDING SOME GENOTYPES

There are systems of genetic markers, such as VNTRs, where there is difficulty in assigning geno-

types unambiguously (Weir, 1992). A single band on an electrophoretic gel may represent a ho-

mozygote, a heterozygote for two alleles with similar copy numbers, or a heterozygote with an allele

giving a band outside the scoring region of the gel. It is only individuals scored as heterozygotes

for which there is no ambiguity and for which tests of association are required. Only the heterozy-

gotes in the original sample are used, and only permuted arrays where all resulting individuals are

heterozygous are used. Since every individual in every array is heterozygous, Hg = L for every

genotype Ag, and the conditional probability in Equation 3 for L loci becomes

Ps =
∏
gεz

2LnAg

nAg !
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USING GOODNESS OF FIT MEASURES

Hypotheses have been tested here by determining the proportion of a large number of permuted

arrays that have a conditional probability no larger than that of the sample. Instead of using

conditional probabilities, arrays could be compared to the hypothesized or expected array on the

basis of a goodness of fit statistic such as chi-square. The significance level would be the proportion

of arrays with a larger statistic than that of the sample.

For multilocus genotype Ag, the observed count is ng and the expected count under the hy-

pothesis of interest is written as ej . The chi-square statistic is the usual

X2 =
∑
g

(ng − eg)2

eg

It is necessary to sum only over the observed genotypes, and use can be made of the fact that, since∑
g ng =

∑
g eg = n, the statistic is [

∑
gεz(n

2
g/eg)]−n. It has been suggested (Anscombe, 1981) that

Karl Pearson may have invented this statistic as an approximation for the exact test only because

of the lack of computing resources at that time.

The difference between goodness of fit tests and tests based on conditional probabilities was

explored in some detail by Maiste (1993). The difference in the present case is greatest when there

are so many different genotypes possible that each one is likely to be unique in a sample. Certainly

this is the situation for forensic databases once five or more loci are scored. If each ng equals

1, the relevant part of the chi-square test statistic is the sum of reciprocals of expected counts,

each of which will be less than 1. The test statistic tends to increase with the number of possible

genotypes. The conditional probability, by contrast, depends on the reciprocal of the product of

factorial counts, each of which is 1, and this product does not change with the number of possible

genotypes. As an extreme example, consider the 20×20 array in Table 1 which represents a sample

of 38 two-locus genotype counts. The row and column totals are the one-locus counts. The sample

size is much less than the 400 possible two-locus genotypes, and each two-locus genotype seen is

unique in the sample. Other arrays, generated by permuting the genotypes at one locus holding

both sets of one-locus counts constant, must have the same (when all two-locus counts remain

at 0 or 1) or smaller (when some counts are greater than 1) conditional probability so that the

significance level for the conditional probability test of no association is 1. However, the sampled
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individuals fall into cells with low expected frequencies and this is reflected by the goodness of fit

test. Based on 17,000 shuffled arrays with the same marginals, the significance level for the X2 test

statistic was found to be 0.01. The same type of difference can happen in sparse arrays when each

sampled individual is not unique.

NUMERICAL RESULTS

The performance of the various test statistics and strategies has been investigated by applying

them to simulated data sets.

Two Loci

Cockerham and Weir (1973) expressed two-locus genotypic frequencies in terms of allelic frequencies

and a set of disequilibrium coefficients. For example

PAABB = p2
Ap2

B + 2pADABB + 2pBDAAB + 2pApB∆AB

+ p2
ADB + p2

BDA + D2
AB + D2

A/B + DADB

For either two or four equally frequent alleles, genotypic frequencies were constructed with each

disequilibrium coefficient in turn set to one-quarter of its maximum value, the other disequilibria

being zero. Samples were taken from populations with these genotypic frequencies. For locus A,

for example, with two equally frequent alleles, the coefficient DA is bounded by ±0.25 so that a

population would be constructed with DA = 0.0625. One thousand replicate samples of size 100

were drawn from each population. For each sample and each test, significance levels were computed

from 10,000 permuted arrays. Although this number of permutations corresponds to the procedure

used to analyze real data sets, it is not really necessary for simulation studies such as this. Oden

(1991) and D.D. Boos (personal communication) have shown that the number of permutations can

be set to a number very much smaller than the number of simulated data sets.

The entries in Table 2 are the proportions of the 1,000 simulated populations in which the

significance level was estimated to be less than or equal to 0.05, and so are the powers of the

tests for a 5% significance level. These powers are labelled P1, P2, P3, P4 for the four hypotheses

considered:
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• P1: two-locus genotype frequency is product of four allele frequencies

• P2: two-locus genotype frequency is product of two A allele frequencies and B genotype

frequency

• P3: two-locus genotype frequency is product of A genotype frequency and two B allele

frequencies

• P4: two-locus genotype frequency is product of two one-locus genotype frequencies

Table 2 shows that the test for overall association, as indicated by P1, is working well in all

situations, and is most sensitive to departures from Hardy-Weinberg disequilibrium. The power for

detecting Hardy-Weinberg disequilibrium is greater for four than for two alleles. As the number

of alleles increases beyond four, however, it has been found that power decreases when only one of

the two loci has departures from Hardy-Weinberg. For the tests where genotype frequencies at one

locus are held constant, the values of P2 and P3 show that Hardy-Weinberg disequilibrium at the

other locus can be detected. The test characterized by P4 is the most powerful of the conditional

probability tests but, of course, does not detect departures from Hardy-Weinberg disequilibrium.

Apart from the Hardy-Weinberg tests, the powers of tests for four-allele data are less than those for

two-allele data. Larger sample sizes are needed to detect associations, although the loss of power

with number of alleles varies among the tests.

Powers for the two-allele case can be verified by the method described by Fu and Arnold (1992).

They discussed tests for 2 × 2 tables, and showed how powers could be calculated by restricting

attention to those tables that make a significant contribution to power. For hypothesis P1 when only

DAB is non-zero, their method can be used for the table of four gametes A1B1, A1B2, A2B1, A2B2

with frequencies pA1pB1 + DAB, pA1pB2 −DAB, pA2pB1 −DAB, pA2pB2 + DAB. Values very similar

to those in Table 2 are obtained. The method should be able to be extended to other situations

covered in the table.

It should be noted that the power values shown in Table 2 are, to some extent, dependent on the

method of simulating data sets. In real populations, where evolutionary forces may create complex

patterns of association, the powers may well be higher. For example, P4 could be high because of
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the non-zero values of several of the disequilibrium coefficients, whereas only one coefficient at a

time was allowed to be non-zero in the simulations.

Many Loci

For more than two loci, power was studied only for the test of the hypothesis in Equation 1 of no

association between any of the alleles. Populations under the alternative hypothesis were simulated

in a different way from previously, and in such a way to address the concerns of several authors

(e.g. Lewontin and Hartl, 1991) that tests of association have low power as tests for population

substructure.

Populations were constructed as amalgamations of several subpopulations that were subjected

to drift, and were simulated by the coalescent process (Hudson, 1990) using a program written by

P.O. Lewis. The degree of drift was specified by the coancestry coefficient θ ≡ FST (Weir, 1990)

that measures the probability of any two allelic genes within a randomly mating population being

identical by descent (relative to identity between populations), and serves as a measure of divergence

of populations from an ancestral population. Apparent associations between alleles were created

by constructing samples as composites of samples of size 20 from 10 such populations. These

admixed samples serve to address the issue of subpopulation structure that has caused concern

over forensic calculations (e.g. Nichols and Balding, 1991) and correspond to the situation where

a population consists of a collection of somewhat distinct subpopulations, but a sample is taken

from the population as a whole.

Only unlinked loci were simulated, and either 5 or 10 equally frequent alleles at 1 to 100 loci

were used. The number of replicate simulated populations used to determine power values ranged

from 500 to 1,000 and the number of permuted arrays used to determine the significance level for

each replicate was 3,200. Power values in the case where θ = 0 (no association) should be 0.05.

When θ 6= 0, power always increased with the number of loci, and with the number of alleles

per locus. When θ = 0.05, for example, the power shown in Table 3 is 0.969 for four loci and 10

alleles and 0.765 for 5 alleles, but it drops to 0.552 for 2 alleles (data not shown). The explanation

is as follows. As the number of loci and alleles per locus increases, there is an increasing chance

that each multilocus genotype in a sample becomes unique and the value of Ps in Equation 3
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reduces to
∏

gεz 2Hg . Because of the Wahlund effect of reducing heterozygosity by amalgamating

10 populations to provide the original simulated samples, the Ps value is expected to be smaller for

this sample than for a permuted array.

The same does not apply for tests on heterozygotes only since the number of heterozygotes is

the same in the sample and the permuted arrays. Indeed, the entries in Table 4 show a decrease

in power, and poor performance of the test when θ = 0 for more than two loci. As Equation 3

tends to a value of 2L, zero power when θ = 0 suggests a very low chance of obtaining a sample

with more than one copy of any four-locus genotype. When θ 6= 0, power values are greater than

zero, since then the samples contain genotypes homozygous at some loci and these individuals are

discarded. This increases the chance of having some duplicate genotypes in the remaining data.

DISCUSSION

Testing for associations between alleles, within and between loci, can be performed satisfactorily

with exact tests conditional on allelic counts. Significance levels can be found by permutation

procedures. These tests are an alternative to those based on normal statistics constructed as

estimated disequilibrium coefficients divided by their estimated standard deviations (Weir and

Cockerham, 1989). In general, Maiste (1993) found that conditional tests performed better than

unconditional tests, of which the variance-based tests are an example.

In the current forensic setting, any associations between neutral genetic markers are most

likely to be due to population substructure. Comparing multi-locus genotypic frequencies with the

products of corresponding allelic frequencies is likely to detect these associations with a power that

increases with the number of alleles per locus and/or the numbers of loci. Specifically, samples of

size as small as 100 individuals have high powers for detecting the associations accompanying θ

values of 0.05 when several loci are used. This θ value is the one suggested by Nichols and Balding

(1991) as being a upper bound on actual values in human populations. The fact that associations

are generally not found when exact tests are applied (e.g. Evett et al. 1995) suggests that θ is less

than this upper bound.

Conversely, Table 3 shows that the power is low when θ is 0.01. What is the effect of not

detecting this level of population substructure? The strength of the evidence of a matching genotype
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between a evidentiary sample and a person suspected of having contributed that sample can be

measured as a likelihood ratio. This is the ratio of the probability of the matching genotypes

conditional on the suspected person being the contributor to the probability when another person

is the contributor. The ratio, termed the forensic index by Weir (1994) by analogy to the usual

paternity index, changes very little for small θ values. For a heterozygous matching genotype, when

both alleles have frequencies of 0.05, the one-locus index changes from 200 when θ = 0 to 145 when

θ = 0.01 (Weir, 1994). The change is greater for smaller allelic frequencies or larger θ values, but

these are less likely for the loci currently being used in human identification.

If the product rule is to be employed to estimate multi-locus genotypic frequencies, it is necessary

to check for associations between the constituent allelic frequencies. If exact tests do not detect

associations, it appears appropriate to base forensic calculations on the product rule. Associations

due to population substructure can be accommodated by modifications of the type proposed by

Evett et al. (1995) or Balding and Nichols (1993).
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Table 1 Sample two-locus array. Marginal totals are one-locus counts.

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 2

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 7

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 4

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2

5 2 1 4 2 1 1 1 1 1 1 5 1 2 1 2 2 2 2 1 38

18



Table 2 Empirical powers of four tests for two loci with m = 2 or m = 4 equally frequent

alleles when significance level is 0.05.

Nonzero

disequilibria m P1 P2 P3 P4

None 2 0.049 0.052 0.051 0.056

4 0.060 0.048 0.061 0.060

DA 2 0.462 0.484 0.058 0.051

4 0.951 0.976 0.041 0.056

DA + DB 2 0.778 0.486 0.498 0.065

4 1.000 1.000 0.995 0.051

DAB 2 0.708 0.744 0.742 0.783

4 0.150 0.216 0.218 0.239

∆AB 2 1.000 1.000 1.000 1.000

4 0.382 0.455 0.491 0.545

DAAB 2 0.980 0.990 0.970 0.980

4 0.275 0.351 0.294 0.324

DAAB + DABB 2 1.000 1.000 1.000 1.000

4 0.555 0.631 0.625 0.724

∆AABB 2 0.676 0.714 0.714 0.749

4 0.204 0.226 0.212 0.259
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Table 3 Empirical powers (with standard deviations) for exact multilocus test with m = 5 or m = 10

equally frequent alleles per locus, when significance level is 0.05.

Number of 5-allele loci

θ m 1 2 3 4 10 15 25 50 75 100

0 5 0.050 0.048 0.052 0.044 0.052 0.056 0.047 0.051 0.047 0.049

(.01) (.01) (.01) (.01) (.02) (.01) (.01) (.01) (.01) (.01)

10 0.050 0.049 0.051 0.052 0.051 0.048 0.050 0.050 0.050 0.049

(.01) (.01) (.01) (.01) (.01) (.01) (.01) (.01) (.01) (.02)

0.005 5 0.053 0.062 0.074 0.089 0.098 0.147 0.145 0.244 0.275 0.354

(.01) (.01) (.01) (.01) (.02) (.02) (.02) (.03) (.02) (.03)

10 0.065 0.067 0.097 0.126 0.129 0.192 0.240 0.327 0.493 0.600

(.01) (.01) (.01) (.01) (.01) (.02) (.02) (.02) (.02) (.02)

0.007 5 0.055 0.082 0.098 0.096 0.127 0.197 0.226 0.370 0.459 0.561

(.01) (.01) (.01) (.01) (.01) (.02) (.01) (.03) (.03) (.02)

10 0.067 0.097 0.106 0.125 0.225 0.274 0.360 0.584 0.740 0.823

(.01) (.01) (.01) (.01) (.02) (.02) (.02) (.03) (.04) (.03)

0.010 5 0.065 0.078 0.104 0.119 0.217 0.270 0.342 0.519 0.682 0.809

(.01) (.01) (.01) (.01) (.03) (.02) (.03) (.02) (.03) (.02)

10 0.068 0.104 0.141 0.193 0.298 0.411 0.583 0.845 0.942 0.986

(.01) (.01) (.01) (.02) (.02) (.02) (.02) (.02) (.01) (.01)

0.050 5 0.148 0.323 0.661 0.770 0.989 1.000 1.000 1.000 1.000 1.000

(.02) (.02) (.02) (.02) (.01) (.00) (.00) (.00) (.00) (.00)

10 0.237 0.774 0.894 0.969 0.999 1.000 1.000 1.000 1.000 1.000

(.01) (.02) (.01) (.01) (.00) (.00) (.00) (.00) (.00) (.00)

0.100 5 0.434 0.856 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(.02) (.02) (.01) (.00) (.00) (.00) (.00) (.00) (.00) (.00)

10 0.757 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(.01) (.00) (.00) (.00) (.00) (.00) (.00) (.00) (.00) (.00)
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Table 4 Empirical power of exact tests with homozygotes excluded when significance level is

0.05.

Number of 10-allele loci

θ 1 2 3 4

0 0.052 0.047 0.005 0.000

0.01 0.062 0.050 0.006 0.002

0.05 0.104 0.065 0.019 0.007

0.10 0.334 0.292 0.083 0.014
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Figure 1: Binary Search Tree.

22


